Skip to main content
Log in

Improved differential evolution based on multi-armed bandit for multimodal optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The main aim of multimodal optimization problems (MMOPs) is to find and deal with multiple optimal solutions using an objective function. MMOPs perform the exploration and exploitation simultaneously in the search space. The novelty of this paper includes the following improvements in differential evolution to be able to solve MMOPs. Clusters are formed from the whole population by applying a niching technique which uses the softmax strategy to assign a cutting probability to the species. Then iterative mutation strategy is followed to generate the unbiased mutant vector. Further, Multi-Armed Bandit (MAB) strategy is used to ensure that new individuals are generated in promising areas. The experimentation of the proposed algorithm has been performed on 20 benchmark functions from IEEE Congress on Evolutionary Computation 2013 (CEC2013). The results depict that the proposed algorithm can be compared with 15 state-of-the-art multimodal optimization algorithms in terms of locating accurate optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Back T, Fogel DB, Michalewicz Z (eds.) (1997) Handbook of evolutionary computation, 1st edn., IOP Publishing Ltd., Bristol

  2. Eiben AE, Smith JE (eds.) (2003) Introduction to evolutionary computing, vol 53, Springer, Heidelberg

  3. Li X, Epitropakis MG, Deb K, Engelbrecht A (2016) Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans Evol Comput 21(4):518–538

    Article  Google Scholar 

  4. Yao J, Kharma N, Grogono P (2005) A multi-population genetic algorithm for robust and fast ellipse detection. Pattern Anal Applic 8(1):149–162. https://doi.org/10.1007/s10044-005-0252-7

    Article  MathSciNet  Google Scholar 

  5. Cuevas E, González M, Zaldívar D, Pérez-Cisneros M (2014) Multi-ellipses detection on images inspired by collective animal behavior. Neural Comput Appl 24(5):1019–1033. https://doi.org/10.1007/s00521-012-1332-4

    Article  Google Scholar 

  6. Sheng W, Swift S, Zhang L, Liu X (2005) A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Trans Syst Man Cybern Part B (Cybern) 35(6):1156–1167. https://doi.org/10.1109/TSMCB.2005.850173

    Article  Google Scholar 

  7. Li Y (2009) Using niche genetic algorithm to find fuzzy rules. In: Proceedings. The 2009 International Symposium on Web Information Systems and Applications (WISA 2009). Citeseer, pp 64

  8. Boughanem M, Tamine L (2002) A study on using genetic niching for query optimisation in document retrieval Crestani F, Girolami M, van Rijsbergen CJ (eds), Springer, Berlin

  9. Goharrizi AY, Singh R, Gole A, Filizadeh S, Muller J, Jayasinghe R (2016) A parallel multimodal optimization algorithm for simulation-based design of power systems. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp 1–1

  10. Wong K-C, Leung K-S, Wong M-H (2010) Protein structure prediction on a lattice model via multimodal optimization techniques. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation. ACM, pp 155–162

  11. Dorling K, Heinrichs J, Messier GG, Magierowski S (2017) Vehicle routing problems for drone delivery. IEEE Trans Syst Man Cybern Syst 47(1):70–85. https://doi.org/10.1109/TSMC.2016.2582745

    Article  Google Scholar 

  12. Wang J, Zhou Y, Wang Y, Zhang J, Chen C LP, Zheng Z (2016) Multiobjective vehicle routing problems with simultaneous delivery and pickup and time windows: Formulation, instances, and algorithms. IEEE Trans Cybern 46(3):582–594. https://doi.org/10.1109/TCYB.2015.2409837

    Article  Google Scholar 

  13. Roberti R, Wen M (2016) The electric traveling salesman problem with time windows. Transp Res Part E: Logist Transp Rev 89:32–52. https://doi.org/10.1016/j.tre.2016.01.010

    Article  Google Scholar 

  14. Yao J, Kharma N, Grogono P (2009) Bi-objective multipopulation genetic algorithm for multimodal function optimization. IEEE Trans Evol Comput 14(1):80–102

    Google Scholar 

  15. Deb K, Saha A (2012) Multimodal optimization using a bi-objective evolutionary algorithm. Evol Comput 20(1):27–62

    Article  Google Scholar 

  16. Wang Y, Li H-X, Yen GG, Song W (2014) Mommop: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern 45(4):830–843

    Article  Google Scholar 

  17. Das S, Maity S, Qu B-Y, Suganthan PN (2011) Real-parameter evolutionary multimodal optimizationa survey of the state-of-the-art. Swarm Evol Comput 1(2):71–88

    Article  Google Scholar 

  18. Pétrowski A (1996) A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE international conference on evolutionary computation. IEEE, pp 798–803

  19. Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evol Comput 10(3):207–234

    Article  Google Scholar 

  20. DeJong KA (1975) Analysis of the behavior of a class of genetic adaptive systems. Technical Report

  21. Mahfoud SW (1992) Crowding and preselection revisited. In: PPSN, vol 2, pp 27–36

  22. Goldberg DE, Richardson J, et al. (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum, Hillsdale, pp 41–49

  23. Yin X, Germay N (1993) A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Artificial neural nets and genetic algorithms. Springer, pp 450–457

  24. Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evol Comput 1(2):101–125

    Article  Google Scholar 

  25. Yang Q, Chen W-N, Li Y, Chen CLPhilip, Xu X-M, Zhang J (2016) Multimodal estimation of distribution algorithms. IEEE Trans Cybern 47(3):636–650

    Article  Google Scholar 

  26. Li X (2005) Efficient differential evolution using speciation for multimodal function optimization. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM, pp 873–880

  27. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol 2. IEEE, pp 1382–1389

  28. Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16(5):601–614

    Article  Google Scholar 

  29. Biswas S, Kundu S, Das S (2014) Inducing niching behavior in differential evolution through local information sharing. IEEE Trans Evol Comput 19(2):246–263

    Article  Google Scholar 

  30. Ursem RK (1999) Multinational evolutionary algorithms. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1633–1640

  31. Yang Q, Chen W-N, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2016) Adaptive multimodal continuous ant colony optimization. IEEE Trans Evol Comput 21(2):191–205

    Article  Google Scholar 

  32. Li X (2009) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169

    Google Scholar 

  33. Qu B-Y, Suganthan PN, Das S (2012) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17(3):387–402

    Article  Google Scholar 

  34. Gao W, Yen GG, Liu S (2013) A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans Cybern 44(8):1314–1327

    Article  Google Scholar 

  35. Zaharie D (2004) A multipopulation differential evolution algorithm for multimodal optimization. In: Proceedings of Mendel, pp 17–22

  36. Hui S, Suganthan PN (2015) Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization. IEEE Trans Cybern 46(1):64–74

    Article  Google Scholar 

  37. Zaharie D (2004) Extensions of differential evolution algorithms for multimodal optimization. In: Proceedings of SYNASC, vol 4, pp 523–534

  38. Qu B-Y, Suganthan PN (2010) Novel multimodal problems and differential evolution with ensemble of restricted tournament selection. In: IEEE Congress on Evolutionary Computation. IEEE, pp 1–7

  39. Epitropakis MG, Li X, Burke EK (2013) A dynamic archive niching differential evolution algorithm for multimodal optimization. In: 2013 IEEE Congress on Evolutionary Computation. IEEE, pp 79–86

  40. Biswas S, Kundu S, Das S (2014) An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution. IEEE Trans Cybern 44(10):1726–1737

    Article  Google Scholar 

  41. Wang Z-J, Zhan Z-H, Lin Y, Yu W-J, Yuan H-Q, Gu T-L, Kwong S, Zhang J (2017) Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Trans Evol Comput 22(6):894–908

    Article  Google Scholar 

  42. Lin X, Luo W, Xu P (2019) Differential evolution for multimodal optimization with species by nearest-better clustering. IEEE transactions on cybernetics

  43. Brits R, Engelbrecht AP, vanden Bergh F (2007) Locating multiple optima using particle swarm optimization. Appl Math Comput 189(2):1859–1883

    MathSciNet  MATH  Google Scholar 

  44. Brits R, Engelbrecht AP, Vanden Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, vol 2. Singapore: Orchid Country Club, pp 692–696

  45. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67. https://doi.org/10.1016/j.knosys.2018.05.009

    Article  Google Scholar 

  46. Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 95:106347. https://doi.org/10.1016/j.asoc.2020.106347

    Article  Google Scholar 

  47. Ayala H VH, dos Santos FM, Mariani VC, dos SantosCoelho L (2015) Image thresholding segmentation based on a novel beta differential evolution approach. Expert Syst Appl 42(4):2136–2142

    Article  Google Scholar 

  48. Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172–186

    Article  MathSciNet  Google Scholar 

  49. Tian M, Gao X (2019) Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Inf Sci 478:422–448

    Article  Google Scholar 

  50. Caraffini F, Kononova AV, Corne D (2019) Infeasibility and structural bias in differential evolution. Inf Sci 496:161–179

    Article  MathSciNet  Google Scholar 

  51. Prabha S, Yadav R (2020) Differential evolution with biological-based mutation operator. Eng Sci Technol Int J 23(2):253–263

    Google Scholar 

  52. He W, Gong W, Wang L, Yan X, Hu C (2019) Fuzzy neighborhood-based differential evolution with orientation for nonlinear equation systems. Knowl-Based Syst 182:104796

    Article  Google Scholar 

  53. Civicioglu P, Besdok E (2019) Bernstain-search differential evolution algorithm for numerical function optimization. Expert Syst Appl 138:112831

    Article  Google Scholar 

  54. Whittle P (1980) Multi-armed bandits and the gittins index. J R Stat Soc Ser B (Methodol) 42 (2):143–149

    MathSciNet  MATH  Google Scholar 

  55. Gittins JC (1989) Multi-armed bandit allocation indices. Wiley, New York

  56. Berry DA, Fristedt B (1985) Bandit problems ; sequential allocation of experiments. Chapman and Hall

  57. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  58. Abbass HA, Sarker R, Newton C (2001) Pde: a pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol 2. IEEE, pp 971–978

  59. Biswas S, Bose D, Das S, Kundu S (2013) Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays. Prog Electromagn Res 52:185–205

    Article  Google Scholar 

  60. Preuss M (2010) Niching the cma-es via nearest-better clustering. In: Proceedings of the 12th annual conference companion on Genetic and evolutionary computation. ACM, pp 1711–1718

  61. Preuss M (2010) Niching the cma-es via nearest-better clustering. In: Proceedings of the 12th annual conference companion on Genetic and evolutionary computation, pp 1711–1718

  62. Li X, Engelbrecht A, Epitropakis MG (2013) Benchmark functions for cec’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Technical Report

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchitra Agrawal.

Ethics declarations

Conflict of Interests

All authors declare that there are no conflicts of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Tiwari, A., Naik, P. et al. Improved differential evolution based on multi-armed bandit for multimodal optimization problems. Appl Intell 51, 7625–7646 (2021). https://doi.org/10.1007/s10489-021-02261-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02261-1

Keywords

Navigation