Vimal S, Khari M, Dey N, Crespo RG, Robinson YH (2020) Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT, Computer Communications.
Guerrero-Ibanez JA, Zeadally S, Contreras-Castillo J (2015) Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE Wirel Commun 22(6):122–128
Google Scholar
Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput Electron Agric 50(1):1–14
Google Scholar
Zhang Q, Reid JF, Noguchi N (1999) Agricultural vehicle navigation using multiple guidance sensors. In: Proceedings of the International Conference on Field and Service Robotics, pp 293–298. August
Dey N, Mahalle PN, Shafi PM, Kimabahune VV, Hassanien AE (2020) Internet of things smart computing and technology: a roadmap ahead
Relf-Eckstein JE, Ballantyne AT, Phillips PWB (2019) Farming Reimagined: A case study of autonomous farm equipment and creating an innovation opportunity space for broadacre smart farming. NJAS-Wageningen J Life Sci 90:100307
Google Scholar
Vimal S, Khari M, Dey N, Crespo RG, Robinson YH (2020) Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT. Computer Communications.
Khosravy M, Gupta N, Patel N, Dey N, Nitta N, Babaguchi N. (2020) Probabilistic stone’s blind source separation with application to channel estimation and multi-node identification in MIMO IoT green communication and multimedia systems, Computer Communications
Vimal S, Khari M, Crespo RG, Kalaivani L, Dey N, Kaliappan M (2020) Energy enhancement using Multiobjective Ant colony optimisation with Double Q learning algorithm for IoT based cognitive radio networks. Computer Communications
Sarkar M, Banerjee S, Badr Y, Sangaiah AK (2017) Configuring a trusted cloud service model for smart city exploration using hybrid intelligence. Int J Amb Comput Intell (IJACI) 8(3):1–21
Google Scholar
Díaz M, Martín C, Rubio B (2016) State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J Netw Comput Appl 67:99–117
Google Scholar
Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun Surv 19(3):1628–1656
Google Scholar
Aram S, Troiano A, Pasero E (2012) Environment sensing using smartphone. In: 2012 IEEE Sensors applications symposium proceedings, pp 1–4. IEEE
Gupta S, Khosravy M, Gupta N, Darbari H (2019) In-field failure assessment of tractor hydraulic system operation via pseudospectrum of acoustic measurements. Turk J Electr Eng CO 27(4):2718–2729
Google Scholar
Gupta S, Gupta N, Tiwari BN, Khosravy M, Senzio-Savino B, Asharif F, Asharif MR (2016) Tractor oil pump fault diagnosis by pseudo-spectrum analysis of vehicle sound records. In: Proceedings of the 31st international technical conference on circuits/systems. Computers and communications
Bohlin M, Forsgren M, Hoist A, Levin B, Aronsson M, Steinert R (2008) Reducing vehicle maintenance using condition monitoring and dynamic planning
Gillblad D, Steinert R, Holst A (2008) Fault-tolerant incremental diagnosis with limited historical data. In: 2008 International conference on prognostics and health management. IEEE, pp 1–8
Wu B, Wang H (2019) A lane identifying approach of the intelligent vehicle in complex condition: intelligent vehicle in complex condition. Int J Amb Comput Intell(IJACI) 10(4):25– 44
Google Scholar
Ali AH, Atia A, Mostafa MSM (2017) Recognizing driving behavior and road anomaly using smartphone sensors. Int J Amb Comput Intell (IJACI) 8(3):22–37
Google Scholar
Völgyesi P, Szilvási S, János S, Lédeczi Á (2011) External smart microphone for mobile phones. In: 2011 Fifth international conference on sensing technology. IEEE, pp 171–176
Sarwar M, Soomro TR (2013) Impact of smartphone’s on society. Eur J Sci Res 98(2):216–226
Google Scholar
Boutaba R, Salahuddin MA, Limam N, Sara S, Shahriar N, Estrada-Solano F, Caicedo OM (2018) A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J Internet Serv Appl 9(1):16
Google Scholar
Djedouboum AC, Ari A, Adamou A, Gueroui AM, Mohamadou A, Aliouat Z (2018) Big data collection in large-scale wireless sensor networks. Sensors 18(12):4474
Google Scholar
Burnett K, Samavi S, Waslanderm S, Barfoot T, Schoellig A (2019) aUToTrack: a lightweight object detection and tracking system for the sae autodrive challenge. In: 2019 16th conference on Computer and Robot Vision (CRV). IEEE, pp 209–216
https://www.precisionfarmingdealer.com/keywords/AutoTrac
https://www.deere.com/en/our-company/news-and-announcements/news-releases/2017/agriculture/2017jun1_4640_universal_display.html
Ganguly K, Gulati A, von Braun J (2017). Innovations spearheading the next transformations in India’s agriculture
Lohento K, Sotannde M (2019) Business models and key success drivers of agtech start-ups CTA
Coppola R, Morisio M (2016) Connected car: technologies, issues, future trends. ACM Comput Surv (CSUR) 49(3):1–36
Google Scholar
Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Information Fusion 42:146–157
Google Scholar
Pasupa K, Sunhem W (2016) A comparison between shallow and deep architecture classifiers on small dataset. In: 2016 8Th international conference on information technology and electrical engineering (ICITEE). IEEE, pp 1–6
Smiti P, Srivastava S, Rakesh N (2018) Video and audio streaming issues in multimedia application. In: 2018 8Th international conference on cloud computing, data science & engineering (confluence). IEEE, pp 360–365
Leme BCC, Almeida LF, Bizarria JWP, Bizarria FCP, Soares AMS, Ramos MAC (2017) Development of a low-cost tool for semi-automatic classification and counting of particles in industrial oils. In: IEEE international conference on Industrial Engineering and Engineering Management (IEEM), p 2017
Renius KT (2020) Tractor and implement. In: Fundamentals of tractor design. Springer, Cham, pp 217–260
Khosravy M, Asharif MR, Yamashita K (2011) A theoretical discussion onthe foundation of stone’s blind source separation. Signal Image Video Process 5:379–388
Google Scholar
Khosravy M, Alsharif MR, Yamashita K (2008) A probabilistic short-length linear predictability approach to blind source separation. In: ITC-CSCC:International Technical Conference on Circuits Systems, Computers and Communications, pp 381– 384
Khosravy M, Alsharif MR, Yamashita K (2009) A pdf-matched modification to stone’s measure of predictability for blind source separation. In: International symposium on neural networks. Springer, pp 219–228
Khosravy M (2010) Blind source separation and its application to speech, image and MIMO-OFDM communication systems, Ph.D. thesis University ofthe Ryukyus
Lartillot O, Toiviainen P (2007) A Matlab toolbox for musical feature extraction from audio. In: International conference on digital audio effects, pp 237–244
Giannakopoulos T, Pikrakis A (2014) Introduction to audio analysis: a MATLAB® approach. Academic, New York
Google Scholar
Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-tolerant techniques—Part i: Fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron 62(6):3757–3767
Google Scholar
Sen PC, Hajra M, Ghosh M (2020) Supervised classification algorithms in machine learning: a survey and review. Springer, Singapore, pp 9–111
Saouabi M, Ezzati A (2020) Data mining classification algorithms. Comput Sci 15(1):3893–94
MathSciNet
MATH
Google Scholar
Gupta N, Khosravy M, Patel N, Senjyu T (2018) A bi-level evolutionary optimization for coordinated transmission expansion planning. IEEE Access 6:48455–48477
Google Scholar
Singh G, Gupta N, Khosravy M (2015) New crossover operators for real coded genetic algorithm (RCGA). In: 2015 International conference on intelligent informatics and biomedical sciences (ICIIBMS). IEEE, pp 135–140
Khosravy M, Gupta N, Patel N, Senjyu T (2020) Frontier applications of nature inspired computation. Springer, Cham
Google Scholar
Gupta N, Khosravy M, Patel N, Dey N (2020) Mahela, O.P, Mendelian evolutionary theory optimization algorithm
Gupta N, Khosravy M, Mahela OP, Patel N (2020) Plant biology inspired genetic algorithm: Superior efficiency to firefly optimizer. In: Applications of firefly algorithm and its variants. Springer, pp 193–219
Gupta N, Khosravy M, Patel N, Sethi I (2018) Evolutionary optimization based on biological evolution in plants. Procedia Comput Sci 126:146–155
Google Scholar
Gupta N, Khosravy M, Patel N, Gupta S, Varshney G (2020) Artificial neural network trained by plant genetics-inspired optimizer. In: Frontier applications of nature inspired computation, Springer
Khosravy M, Gupta N, Patel N, Mahela OP, Varshney G (2020) Tracing the points in search space in plant biology genetics algorithm optimization. In: Frontier applications of nature inspired computation. Springer, Singapore, pp 180–195
Gupta N, Khosravy M, Patel N, Mahela OP, Varshney G (2020) Plant Genetics-Inspired evolutionary optimization: a descriptive tutorial. In: Frontier applications of nature inspired computation. Springer, Singapore, pp 53–77
Gupta N, Khosravy M, Patel N, Gupta S, Varshney G (2020) Evolutionary artificial neural networks: Comparative study on state of the art optimizers. In: Frontier applications of nature inspired computation, Springer
Davis S, Mermelstein P (1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process 28(4):357–366
Google Scholar
Schaffer J, Whitley D, Eshelman LJ (1992) David Combinations of genetic algorithms and neural networks: A survey of the state of the art. In: [Proceedings] COGANN-92: international workshop on combinations of genetic algorithms and neural networks. IEEE, pp 1–37
Gupta N, Patel N, Tiwari BN, Khosravy M (2018) Genetic algorithm based on enhanced selection and log-scaled mutation technique. In: Proceedings of the Future Technologies Conference, Springer, Cham, pp. 730–748, November
Tenenev VA, Shaura AS (2020) Solving general nonlinear programming problems with a genetic algorithm. Intellekt Sist Proizv 17(4):137–142
Google Scholar
Yin C, Luo Z, Ni M, Cen K (1998) Predicting coal ash fusion temperature with a back-propagation neural network model, vol 77
Johansson EM, Dowla FU, Goodman DM (1991) Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method. Int J Neural Sys 2(04):291–301
Google Scholar
Kalathingal MSH, Basak S, Mitra J (2020). Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. J Food Process Eng e13128
Samanta B, Al-Balushi KR, Al-Araimi SA (2001) Use of genetic algorithm and artificial neural network for gear condition diagnostics, Elsevier Science Ltd
Also Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Publishing, Boston
Google Scholar
Author links open overlay panelMartin FodsletteMoller (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533
Google Scholar
Kaur H, Kaur M (2020) Fault classification in a transmission line using levenberg–marquardt algorithm based artificial neural network, Springer, Singapore
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M, Siegert S (2018). pROC: display and analyze ROC curves. R Package Version 1
Choi K, Fazekas G, Sandler M, Cho K (2018) A comparison of audio signal preprocessing methods for deep neural networks on music tagging. In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, pp 1870–1874
Kumar S, Solanki VK, Choudhary KC, Selamat A, Crespo RG (2020) Comparative study on Ant Colony Optimization (ACO) and K-means clustering approaches for jobs scheduling and energy optimization model in Internet of Things (IoT). IJIMAI 6(1):1–10
Google Scholar
Agrawal P, Jayaswal P (2020) Diagnosis and classifications of bearing faults using artificial neural network and support vector machine. J Inst Eng (India) C 101(1):61–72
Google Scholar