Differential evolution algorithm directed by individual difference information between generations and current individual information

Abstract

In differential evolution (DE) algorithm, numerous adaptive methods based on superior individual information in the current generation have been proposed. However, the individual difference between two generations, which represents whether the corresponding parameters and mutation strategy are suitable for this individual, has not been utilized. Considering that different (superior or inferior) individuals need different parameters and strategies, a new DE variant (DI-DE), which is directed by individual difference information between generations and individual information in the current generation to obtain optimal control parameters and an offspring generation strategy, is proposed. In DI-DE, every individual possesses its own parameters and strategy. First, individuals are distinguished as superior or inferior depending on their fitness values in the current generation. The parameters are tuned in accordance with the information on superior individuals. In addition, the conception of potential individuals is proposed for superior and inferior individuals on the basis of the individual difference information between two generations. By learning from the current and past information, the suitable mutation strategy is adjusted for superior and inferior individuals on the basis of the experience of potential individuals to help them become potential individuals in the next generation. DI-DE is compared with 28 excellent algorithms on three well-known benchmark sets (CEC2005, CEC2013, and CEC2014) of low dimensionality and one large scale benchmarks set (CEC LSGO 2013). Experimental results demonstrate the competitive performance of DI-DE. Finally, DI-DE is applied to optimize the operation conditions of PX oxidation process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012. University of California, California

    Google Scholar 

  2. 2.

    Sarkar S, Das S, Chaudhuri SS (2015) A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recogn Lett 54:27–35

    Article  Google Scholar 

  3. 3.

    Tenaglia GC, Lebensztajn L (2014) A multiobjective approach of differential evolution optimization applied to electromagnetic problems. IEEE Trans Magn 50(2):625–628

    Article  Google Scholar 

  4. 4.

    Masood A, Al-Jumaily A (2015) A adaptive differential evolution based feature selection and parameter optimization for advised SVM classifier. In: International conference on neural information processing, pp 401–410

  5. 5.

    Baatar N, Zhang D, Koh CS (2013) An improved differential evolution algorithm adopting-best mutation strategy for global optimization of electromagnetic devices. IEEE Trans Magn 49(5):2097–2100

    Article  Google Scholar 

  6. 6.

    Moreno L, Garrido S (2016) Differential evolution Markov Chain filter for global localization. J Intell Robot Syst 82(3–4):513–536

    Article  Google Scholar 

  7. 7.

    Karaboga N (2005) Digital IIR filter design using differential evolution algorithm. Eurasip J Adv Signal Process 2005(8):1–8

    MATH  Article  Google Scholar 

  8. 8.

    Bhatia S, Vishwakarma VP (2017) Feed forward neural network optimization using self adaptive differential evolution for pattern classification. In: IEEE international conference on recent trends in electronics, information & communication technology, pp 184–188

  9. 9.

    Niu J, Zhong W, Liang Y, Luo N, Qian F (2015) Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization. Knowl-Based Syst 88(C):253–263

    Article  Google Scholar 

  10. 10.

    Shaikh MU, Malik SUR, Qureshi A, Yaqoob S (2010) Intelligent decision making based on data mining using differential evolution algorithms and framework for ETL workflow management. In: Second international conference on computer engineering and applications, pp 22–26

  11. 11.

    Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Gamperle R, Muller SD, Koumoutsakos A (2002) A parameter study for differential evolution. In: Wseas international conference on advances in intelligent systems, fuzzy systems, evolutionary computation, pp 293–298

  13. 13.

    Ronkkonen J, Kukkonen S, Price K V (2005) Real-parameter optimization with differential evolution. In: IEEE congress on evolutionary computation, vol 501, pp 506–513

  14. 14.

    Liu J, Lampinen J (2002) A fuzzy adaptive differential evolution algorithm. In: TENCON ’02. Proceedings of 2002 IEEE region 10 conference on computers, communications, control and power engineering, vol 601, pp 606–611

  15. 15.

    Brest J, Zumer V, Maucec MS (2006) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: Congress on evolutionary computation, pp 215–222

  16. 16.

    Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  17. 17.

    Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  18. 18.

    Pan QK, Suganthan PN, Wang L, Gao L, Mallipeddi R (2011) A differential evolution algorithm with self-adapting strategy and control parameters. Comput Oper Res 38(1):394–408

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  20. 20.

    Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  21. 21.

    Fan Q, Yan X (2014) Differential evolution algorithm with self-adaptive strategy and control parameters for P-xylene oxidation process optimization. Soft Comput 19(5):1–29

    Google Scholar 

  22. 22.

    Fan Q, Zhang Y (2016) Self-adaptive differential evolution algorithm with crossover strategies adaptation and its application in parameter estimation. Chemometrics Intell Lab Syst 151:164–171

    Article  Google Scholar 

  23. 23.

    Zhao Z, Yang J, Hu Z, Che H (2016) A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems. Eur J Oper Res 250(1):30–45

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Fan Q, Yan X (2016) Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Trans Cybern 46(1):219

    Article  Google Scholar 

  25. 25.

    Fan Q, Yan X, Xue Y (2017) Prior knowledge guided differential evolution. Soft Comput 21(22):1–18

    Article  Google Scholar 

  26. 26.

    Wang S, Li Y, Yang H (2017) Self-adaptive differential evolution algorithm with improved mutation mode. Appl Intell 47(3):644–658

    Article  Google Scholar 

  27. 27.

    Tang L, Dong Y, Liu J (2015) Differential evolution with an individual-dependent mechanism. IEEE Trans Evol Comput 19(4):560–574

    Article  Google Scholar 

  28. 28.

    Guo Z, Liu G, Li D, Wang S (2016) Self-adaptive differential evolution with global neighborhood search. Soft Computing: 1–10

  29. 29.

    Gou J, Guo WP, Hou F, Wang C, Cai YQ (2015) Adaptive differential evolution with directional strategy and cloud model. Appl Intell 42(2):369–388

    Article  Google Scholar 

  30. 30.

    Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2017) Ensemble of differential evolution variants. Information Sciences

  31. 31.

    Ali MZ, Awad NH, Suganthan PN, Reynolds RG (2016) An adaptive multipopulation differential evolution with dynamic population reduction. IEEE Trans Cybern PP(99):1–12

    Google Scholar 

  32. 32.

    Zhou YZ, Yi WC, Gao L, Li XY (2017) Adaptive differential evolution with sorting crossover rate for continuous optimization problems. IEEE Trans Cybern PP(99):1–12

    Google Scholar 

  33. 33.

    Ge YF, Yu WJ, Lin Y, Gong YJ, Zhan ZH, Chen WN, Zhang J (2017) Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans Cybern PP(99):1–15

    Google Scholar 

  34. 34.

    Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Repor t 2005005, Nanyang Technological University, Singapore and KanGAL Report IIT Kanpur, India

  35. 35.

    Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Repor t 2005005, Nanyang Technological University, Singapore and KanGAL Report IIT Kanpur, India

  36. 36.

    Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  37. 37.

    Li X, Tang K, Omidvar MN, Yang Z, Qin K (2013) Benchmark functions for the CEC’2013 special session and competition on large-scale global optimization

  38. 38.

    Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  39. 39.

    Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2):159

    Article  Google Scholar 

  40. 40.

    García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez AM (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res 185(3):1088–1113

    MATH  Article  Google Scholar 

  41. 41.

    Gunasundari S, Janakiraman S, Meenambal S (2016) Velocity bounded boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis. Expert Syst Appl 56(C):28–47

    Article  Google Scholar 

  42. 42.

    Tian M, Gao X, Dai C (2017) Differential evolution with improved individual-based parameter setting and selection strategy. Appl Soft Comput 56:286–297

    Article  Google Scholar 

  43. 43.

    Mlakar U, Jr IF, Fister I (2016) Hybrid self-adaptive cuckoo search for global optimization. Swarm Evol Comput 29:47–72

    Article  Google Scholar 

  44. 44.

    Singh G, Deep K (2016) Effectiveness of new multiple-PSO based membrane optimization algorithms on CEC 2014 benchmarks and Iris classification. Natural Computing: 1–24

  45. 45.

    Topal AO, Altun O (2016) A novel meta-heuristic algorithm: dynamic virtual bats algorithm. Inf Sci 354:222–235

    Article  Google Scholar 

  46. 46.

    Topal AO, Yildiz YE, Ozkul M (2017) Improved dynamic virtual bats algorithm for global numerical optimization. In: Wcecs

  47. 47.

    Yang M, Omidvar MN, Li CH, Li XD, Cai ZH, Kazimipour B, Yao X (2017) Efficient resource allocation in cooperative co-evolution for large-scale global optimization. IEEE Trans Evol Comput 21(4):493–505. https://doi.org/10.1109/Tevc.2016.2627581

    Article  Google Scholar 

  48. 48.

    Glorieux E, Svensson B, Danielsson F, Lennartson B (2017) Constructive cooperative coevolution for large-scale global optimisation. J Heuristics 23(6):449–469. https://doi.org/10.1007/s10732-017-9351-z

    Article  Google Scholar 

  49. 49.

    Omidvar MN, Li X, Mei Y, Yao X (2014) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378–393

    Article  Google Scholar 

  50. 50.

    Liu H, Guan S, Liu F, Wang Y (2005) Cooperative co-evolution with formula based grouping and CMA for large scale optimization. In: International conference on computational intelligence and security, pp 282–285

  51. 51.

    López ED, Puris A, Bello RR (2015) Vmode: a hybrid metaheuristic for the solution of large scale optimization problems. Investigacion Operacional 36(3):232–239

    MathSciNet  Google Scholar 

  52. 52.

    Latorre A, Muelas S, Peña JM (2013) Large scale global optimization: experimental results with MOS-based hybrid algorithms. In: 2013 IEEE congress on evolutionary computation, pp 2742–2749

  53. 53.

    Fan Q, Yan X (2015) Self-adaptive differential evolution algorithm with discrete mutation control parameters. Pergamon Press Inc 42(3):1551–1572

    Google Scholar 

  54. 54.

    Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci Int J 329(C):329–345

    Google Scholar 

  55. 55.

    Yang Y, Zong X, Yao D, Li S (2016) Improved Alopex-based evolutionary algorithm (AEA) by quadratic interpolation and its application to kinetic parameter estimations. Appl Soft Comput 51:23–38

    Article  Google Scholar 

  56. 56.

    Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1(6):80–83

    Article  Google Scholar 

  57. 57.

    Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Friedman M (1939) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Publ Am Stat Assoc 32(200):675–701

    MATH  Article  Google Scholar 

  59. 59.

    Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  61. 61.

    García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617–644

    MATH  Article  Google Scholar 

  62. 62.

    Holland BS, Copenhaver DP (1987) An improved sequentially rejective Bonferroni test procedure. Biometrics 43(2):417–423

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Kleerebezem R, Lettinga G (2000) High-rate anaerobic treatment of purified terephthalic acid wastewater. Water Sci Technol 42:259–268

    Article  Google Scholar 

  64. 64.

    Kudo S, Shimomura K, Bamoto T (1969) Liquid phase oxidation of xylenes

  65. 65.

    Yan X, Du W, Qian F (2004) Development of a kinetic model for industrial oxidation of p-xylene by RBF-PLS and CCA. Aiche J 50(6):1169–1176

    Article  Google Scholar 

  66. 66.

    Yan X, Chen D, Shangxu HU, Ding J (2002) Estimation of kinetic parametersusing chaos genetic algorithms. J Chem Ind Eng 53(8):810–814

    Google Scholar 

  67. 67.

    Yan XF, Juan YU, Feng Q (2005) Development of an artifical neural network model for combustion reaction in p −xylene oxidation reactor. Polyester Industry

  68. 68.

    Geng DZ, Xi C, Shao ZJ, Qian JX (2006) Interface between MATLAB and aspen plus based on COM technology and its advanced application. Control Instrum Chem Ind 33(3):30–34

    Google Scholar 

  69. 69.

    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the 973 Project of China (2013CB733600), and Fundamental Research Funds for the Central Universities under Grant of China (222201717006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 55.9 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Li, Z. & Yan, X. Differential evolution algorithm directed by individual difference information between generations and current individual information. Appl Intell 49, 628–649 (2019). https://doi.org/10.1007/s10489-018-1255-6

Download citation

Keywords

  • Differential evolution
  • Mutation strategy
  • Parameter setting
  • Superior individuals
  • Potential individuals