Dynamic weighted ensemble classification for credit scoring using Markov Chain

Abstract

As the ensemble methods achieve significantly better performances than individual models do, they have been widely applied to credit scoring. However, most of them employ a static combiner to combine base classifiers, which do not consider the base classifiers’ characters and their dynamic classification ability. Though some dynamic ensemble methods are proposed, they need to produce a large number of base classifiers or employ a fixed combiner, which limit the generality of the ensemble methods. In this paper, we propose a new dynamic weighted ensemble method for credit scoring. Markov Chain is employed to model the change of each classifier’s classification ability and build a dynamic weighted trainable combiner, which dynamically assign weights to the base classifiers for each sample in the testing set. Through eight credit data sets from the real world, the experimental study demonstrates the ability and efficiency of the dynamic weighted ensemble method to improve prediction performance against the benchmark models, including some well-known individual classifiers and dynamic ensemble methods. Moreover, the proposed method can effectively decrease the misclassification cost, which can reduce risks for the financial institutions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Lin WY, Hu YH, Tsai CF (2012) Machine learning in financial crisis prediction: a survey. IEEE T Syst Man Cy C 42(4):421–436. https://doi.org/10.1109/tsmcc.2011.2170420

    Article  Google Scholar 

  2. 2.

    Bahrammirzaee A, Ghatari AR, Ahmadi P, Madani K (2011) Hybrid credit ranking intelligent system using expert system and artificial neural networks. Appl Intell 34(1):28–46. https://doi.org/10.1007/s10489-009-0177-8

    Article  Google Scholar 

  3. 3.

    BCBS (2011) Basel III: a global regulatory framework for more resilient banks and banking systems. Bank for International Settlements, Basel

    Google Scholar 

  4. 4.

    Lessmann S, Baesens B, Seow HV, Thomas LC (2015) Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur J Oper Res 247(1):124–136

    MATH  Article  Google Scholar 

  5. 5.

    Avery RB, Calem PS, Canner GB (2004) Consumer credit scoring: do situational circumstances matter? J Banking Finance 28(4):835–856. https://doi.org/10.1016/j.jbankfin.2003.10.009

    Article  Google Scholar 

  6. 6.

    Zhou ZH (2008) Knowledge acquisition via ensemble learning. In: 2008 international forum on knowledge technology, pp 361–362

  7. 7.

    Polikar R (2012) Ensemble learning. Springer, US

    Google Scholar 

  8. 8.

    Zhang CX, Duin RPT (2009) An empirical study of a linear regression combiner on multi-class data sets. In: Benediktsson, JA, Kittler, J, Roli, F (edn). Multiple classifier systems, proceedings, vol 5519. Lecture Notes in Computer Science, pp 478–487

  9. 9.

    Zhang ZL, Luo XG, Garcia S, Tang JF, Herrera F (2017) Exploring the effectiveness of dynamic ensemble selection in the one-versus-one scheme. Knowl-Based Syst 125:53–63

    Article  Google Scholar 

  10. 10.

    Zhu Y Q, Ou J S, Chen G, Yu H P (2011) Dynamic weighting ensemble classifiers based on cross-validation. Neural Comput Appl 20(3):309–317

    Article  Google Scholar 

  11. 11.

    Crook J N, Edelman D B, Thomas L C (2007) Recent developments in consumer credit risk assessment. Eur J Oper Res 183(3):1447–1465. https://doi.org/10.1016/j.ejor.2006.09.100

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Beque A, Coussement K, Gayler R, Lessmann S (2017) Approaches for credit scorecard calibration: an empirical analysis. Knowl-Based Syst 134:213–227. https://doi.org/10.1016/j.knosys.2017.07.034

    Article  Google Scholar 

  13. 13.

    Dietterich T G (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157. https://doi.org/10.1023/a:1007607513941

    Article  Google Scholar 

  14. 14.

    Fisher R A (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  15. 15.

    Hand D J, Henley W E (1997) Statistical classification methods in consumer credit scoring: a review. J Royal Stat Soc Ser A (Statistics in Society) 160:523–541

    Article  Google Scholar 

  16. 16.

    Marques A, García V, Sanchez J (2012) A literature review on the application of evolutionary computing to credit scoring. J Oper Res Soc 64(9):1384–1399

    Article  Google Scholar 

  17. 17.

    Tsai C -F, Chen M -L (2010) Credit rating by hybrid machine learning techniques. Appl Soft Comput 10 (2):374–380

    Article  Google Scholar 

  18. 18.

    Qian B, Rasheed K (2010) Foreign exchange market prediction with multiple classifiers. J Forecasting 29 (3):271–284. https://doi.org/10.1002/for.1124

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Sun J, Li H (2012) Financial distress prediction using support vector machines: ensemble vs. individual. Appl Soft Comput 12(8):2254–2265

    Article  Google Scholar 

  20. 20.

    Chen N, Ribeiro B, Chen A (2016) Financial credit risk assessment: a recent review. Artif Intell Rev 45(1):1–23

    Article  Google Scholar 

  21. 21.

    Li H, Sun J (2013) Predicting business failure using an RSF-based case-based reasoning ensemble forecasting method. J Forecasting 32(2):180–192

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Yu L A, Zhao Y, Tang L (2017) Ensemble forecasting for complex time series using sparse representation and neural networks. J Forecasting 36(2):122–138

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Zhou L G, Lu D, Fujita H (2015) The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches. Knowl-Based Syst 85:52–61. https://doi.org/10.1016/j.knosys.2015.04.017

    Article  Google Scholar 

  24. 24.

    Zhang C X, Duin R P W (2009) An empirical study of a linear regression combiner on multi-class data sets. In: Proceedings of multiple classifier systems, international workshop, MCS, vol 2009. Reykjavik, Iceland, pp 478–487

  25. 25.

    Abellán J, Mantas C J (2014) Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Syst Appl 41(8):3825–3830

    Article  Google Scholar 

  26. 26.

    Ala’raj M, Abbod M F (2016) Classifiers consensus system approach for credit scoring. Knowl-Based Syst 104:89–105. https://doi.org/10.1016/j.knosys.2016.04.013

    Article  Google Scholar 

  27. 27.

    Kim E, Kim W, Lee Y (2003) Combination of multiple classifiers for the customer’s purchase behavior prediction. Decis Support Syst 34(2):167–175

    Article  Google Scholar 

  28. 28.

    Zhang C X, Duin R P W (2011) An experimental study of one- and two-level classifier fusion for different sample sizes. Pattern Recogn Lett 32(14):1756–1767

    Article  Google Scholar 

  29. 29.

    Duin RPW, Tax DMJ (1998) Classifier conditional posterior probabilities. In: Joint Iapr international workshops on advances in pattern recognition, pp 611–619

  30. 30.

    Ting K M, Witten I H (1999) Issues in stacked generalization. J Artif Intell Res 10:271–289

    MATH  Article  Google Scholar 

  31. 31.

    Kuncheva LI (2014) Combining pattern classifiers: methods and algorithms, 2nd edn

  32. 32.

    Yu L A, Yue W Y, Wang S Y, Lai K K (2010) Support vector machine based multiagent ensemble learning for credit risk evaluation. Expert Syst Appl 37(2):1351–1360

    Article  Google Scholar 

  33. 33.

    Jurek A, Bi Y X, Wu S L, Nugent C (2014) A survey of commonly used ensemble-based classification techniques. Knowl Eng Rev 29(5):551–581

    Article  Google Scholar 

  34. 34.

    Zhang L, Zhang L L, Teng W L, Chen Y B (2013) Based on information fusion technique with data mining in the application of finance early-warning. Procedia Comput Sci 17:695–703. https://doi.org/10.1016/j.procs.2013.05.090

    Article  Google Scholar 

  35. 35.

    Ko A H R, Sabourin R, Britto A S (2008) From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn 41(5):1718–1731

    MATH  Article  Google Scholar 

  36. 36.

    Woloszynski T, Kurzynski M, Podsiadlo P, Stachowiak G W (2012) A measure of competence based on random classification for dynamic ensemble selection. Inf Fusion 13(3):207–213. https://doi.org/10.1016/j.inffus.2011.03.007

    Article  Google Scholar 

  37. 37.

    Woloszynski T, Kurzynski M (2011) A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn 44(10–11):2656–2668. https://doi.org/10.1016/j.patcog.2011.03.020

    MATH  Article  Google Scholar 

  38. 38.

    Dos Santos E M, Sabourin R, Maupin P (2008) A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recogn 41(10):2993–3009. https://doi.org/10.1016/j.patcog.2008.03.027

    MATH  Article  Google Scholar 

  39. 39.

    Sun J, Fujita H, Chen P, Li H (2017) Dynamic financial distress prediction with concept drift based on time weighting combined with adaboost support vector machine ensemble. Knowl-Based Syst 120:4–14. https://doi.org/10.1016/j.knosys.2016.12.019

    Article  Google Scholar 

  40. 40.

    Cinlar E (2015) Introduction to stochastic process. IEEE Trans Syst Man Cybern SMC 3(5):533–533

    Google Scholar 

  41. 41.

    Jarrow R A, Lando D, Turnbull S M (1997) A Markov model for the term structure of credit risk spreads. Rev Financ Stud 10(2):481–523

    Article  Google Scholar 

  42. 42.

    Timofeeva G A F, Timofeev N (2012) Forecasting credit portfolio components with a Markov chain model. Autom Remote Control 73(4):637–651

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Liu K, Lai KK, Guu S-M (2009) Dynamic credit scoring on consumer behavior using fuzzy Markov model. In: Fourth international multi-conference on computing in the global information technology, 2009. ICCGI’09. IEEE, pp 235–239

  44. 44.

    Fung E S, Siu T K (2012) A flexible Markov chain approach for multivariate credit ratings. Comput Econ 39(2):135–143

    MATH  Article  Google Scholar 

  45. 45.

    Chen Y -K (2007) Economic design of variable sampling interval T 2 control charts—a hybrid Markov chain approach with genetic algorithms. Expert Syst Appl 33(3):683–689

    Article  Google Scholar 

  46. 46.

    Sousa M R, Gama J, Brandao E (2016) Dynamic credit score modeling with short-term and long-term memories: the case of Freddie Mac’s database. J Risk Model Validat 10(1):59–80

    Article  Google Scholar 

  47. 47.

    So M M C, Thomas L C (2011) Modelling the profitability of credit cards by Markov decision processes. Eur J Oper Res 212(1):123–130

    Article  Google Scholar 

  48. 48.

    Lipton A, Rennie A, Bielelcki T R, Crépey S, Herbertsson A (2012) Markov Chain models of portfolio credit risk. The Oxford Handbook of Credit Derivatives, Oxford. https://doi.org/10.1093/oxfordhb/9780199546787.013.0010

    Google Scholar 

  49. 49.

    Abdou H, Pointon J, El-Masry A (2008) Neural nets versus conventional techniques in credit scoring in Egyptian banking. Expert Syst Appl 35(3):1275–1292. https://doi.org/10.1016/j.eswa.2007.08.030

    Article  Google Scholar 

  50. 50.

    Vapnik V N (1995) The nature of statistical learning theory. IEEE Trans Neural Netw 8(6):988–999

    MATH  Google Scholar 

  51. 51.

    Zhou L G, Si Y W, Fujita H (2017) Predicting the listing statuses of Chinese-listed companies using decision trees combined with an improved filter feature selection method. Knowl-Based Syst 128:93–101. https://doi.org/10.1016/j.knosys.2017.05.003

    Article  Google Scholar 

  52. 52.

    Xu W, Xiao Z, Dang X, Yang D L, Yang X L (2014) Financial ratio selection for business failure prediction using soft set theory. Knowl-Based Syst 63:59–67. https://doi.org/10.1016/j.knosys.2014.03.007

    Article  Google Scholar 

  53. 53.

    Xu W, Xiao Z, Yang D L, Yang X L (2015) A novel nonlinear integrated forecasting model of logistic regression and support vector machine for business failure prediction with all sample sizes. J Test Eval 43(3):13. https://doi.org/10.1520/jte20130297

    Article  Google Scholar 

  54. 54.

    UCI Machine Learning Repository (2013) University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml

  55. 55.

    Thomas L C, Crook J, Edelman D (2002), Credit scoring and its applications. SIAM

  56. 56.

    Yeh I C, Lien C H (2009) The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst Appl 36(2):2473–2480

    Article  Google Scholar 

  57. 57.

    Xiao H S, Xiao Z, Wang Y (2016) Ensemble classification based on supervised clustering for credit scoring. Appl Soft Comput 43:73–86. https://doi.org/10.1016/j.asoc.2016.02.022

    Article  Google Scholar 

  58. 58.

    Calabrese R, Osmetti S A (2015) Improving forecast of binary rare events data: a GAM-based approach. J Forecasting 34(3):230– 239

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Akkoc S (2012) An empirical comparison of conventional techniques, neural networks and the three stage hybrid adaptive neuro fuzzy inference system (ANFIS) model for credit scoring analysis: the case of Turkish credit card data. Eur J Oper Res 222(1):168–178. https://doi.org/10.1016/j.ejor.2012.04.009

    Article  Google Scholar 

  60. 60.

    Teng G -E, He C -Z, Xiao J, Jiang X -Y (2013) Customer credit scoring based on HMM/GMDH hybrid model. Knowl Inf Syst 36(3):731–747

    Article  Google Scholar 

  61. 61.

    Hand D J (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77(1):103–123

    Article  Google Scholar 

  62. 62.

    Hand D J, Anagnostopoulos C (2013) When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance? Pattern Recogn Lett 34(5):492–495

    Article  Google Scholar 

  63. 63.

    Garcia V, Marques A I, Sanchez J S (2015) An insight into the experimental design for credit risk and corporate bankruptcy prediction systems. J Intell Inf Syst 44(1):159–189

    Article  Google Scholar 

  64. 64.

    Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the editor and the referees for their constructive remarks that helped to improve the clarity and the completeness of this paper. The work was supported by the National Natural Science Foundation of China [grant numbers 71671019, 71701116]; and MOE (Ministry of Education in China) Project of Humanities and Social Sciences [grant number 15YJC630016].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Xiao, Z., Zhong, B. et al. Dynamic weighted ensemble classification for credit scoring using Markov Chain. Appl Intell 49, 555–568 (2019). https://doi.org/10.1007/s10489-018-1253-8

Download citation

Keywords

  • Credit scoring
  • Dynamic weighted ensemble
  • Markov chain
  • Machine learning