Skip to main content
Log in

Some new operations on single-valued neutrosophic matrices and their applications in multi-criteria group decision making

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The single-valued neutrosophic set plays a crucial role to handle indeterminant and inconsistent information during decision making process. In recent research, a development in neutrosophic theory is emerged, called single-valued neutrosophic matrices, are used to address uncertainties. The beauty of single-valued neutrosophic matrices is that the utilizing of several fruitful operations in decision making. In this paper, some novel operations on neutrosophic matrices of are introduced, that is, type-1 product \((\tilde \odot )\), type-2 product \((\tilde \otimes )\) and minus \((\tilde \ominus )\) between two single-valued neutrosophic matrices. Also, we introduced complement, transpose, upper and lower α −level matrices of single-valued neutrosophic matrices and discussed related properties. Furthermore, we propose a multi-criteria group decision making method based on these new operations, and give an application of the proposed method in a real life problem. Finally, we compare proposed method in this paper with proposed methods previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arockiarani I, Sumathi IR (2014) A fuzzy neutrosophic soft matrix approach in decision making. JGRMA 2(2):14–23

    Google Scholar 

  2. Biswas P, Pramanik S, Giri BC (2016) TOPSIS Method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput Applic 27(3):727–737

    Article  Google Scholar 

  3. Bhattacharyya S, Roy BK, Majumdar P (2018) On distances and similarity measures between two interval neutrosophic sets. J Theory 20:27–47

    Google Scholar 

  4. Çağman N, Enginoğlu S (2010) Soft matrix theory and its decision making. Comput Math Appl 59 (10):3308–3314

    Article  MathSciNet  Google Scholar 

  5. Çağman N, Enginoğlu S (2012) Fuzzy soft matrix theory and its applications in decision making. Iran J Fuzzy Syst 9(1):109–119

    MathSciNet  MATH  Google Scholar 

  6. Deli I, Broumi S (2015) Neutrosophic soft matrices and NSM-decision making. J Intell Fuzzy Syst 28 (5):2233–2241

    Article  MathSciNet  Google Scholar 

  7. Broumi S, Smarandache F (2013) Several similarity measures of neutrosophic sets. Neutrosophic Sets Syst 1:54–62

    Google Scholar 

  8. Dhar M, Broumi S, Smarandache F (2014) A note on square neutrosophic fuzzy matrices. Neutrosophic Sets Syst 3:37–41

    MATH  Google Scholar 

  9. Dhar M (2016) Study of some properties of intuitionistic fuzzy soft matrix. IJ Inf Eng Electron Bus 2:37–45

    Google Scholar 

  10. Ji P, Wang J, Zhang H (2016) Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third party logistics. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2660-6

    Article  Google Scholar 

  11. Kandasamy WBV, Smarandache F (2012) Neutrosophic super matrices and quasi super matrices. ZIP PUBLISHING, book, p 200

  12. Kandasamy WBV, Smarandache F (2004) Fuzzy relational maps and neutrosophic relational maps. HEXIS Church Rock, book, p 302

  13. Khan SK, Pal M (2002) Some operations on intuitionistic fuzzy matrices, Presented in International Conference on Analysis and Discrete Structures. Indian Institute of Technology, Kharagpur, pp 22–24

    Google Scholar 

  14. Karaaslan F The determinant and adjoint of a single-valued neutrosophic matrix. Submitted

  15. Karaaslan F (2017) Possibilty neutrosophic soft sets and PNS-decision making. Appl Soft Comput 54:403–414

    Article  Google Scholar 

  16. Kim JB, Baartmans A, Sahadin NS (1989) Determinant theory for fuzzy matrices. Fuzzy Sets Syst 29:349–356

    Article  MathSciNet  Google Scholar 

  17. Liang R-x, Wang J, Li L Multi-criteria group decision making method based on interdependent inputs of single valued trapezoidal neutrosophic information. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2672-2

    Article  Google Scholar 

  18. Liu P, Shi L (2015) The generalized hybrid weighted average operator basen on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Comput Applic 26:457–471

    Article  Google Scholar 

  19. Liu P, Chu Y, Li Y, Chen Y (2014) Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. Int J Fuzzy Syst 16(2):242–255

    Google Scholar 

  20. Liu P, Wang Y (2014) Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput Appl 25:2001–2010

    Article  Google Scholar 

  21. Liu P, Teng F (2018) Multiple attribute decision making method based on normal neutrosophic generalized weighted power averaging operator. Int J Mach Learn Cybern 9(2):281–293

    Article  Google Scholar 

  22. Mondal JI, Roy TK (2013) Intuitionistic fuzzy soft matrix theory. Math Stat 1(2):43–49

    Google Scholar 

  23. Mukherjee A, Sarkar S (2014) Several similarity measures of neutrosophic soft sets and its application in real life problems. Ann Pure Appl Math 7(1):1–6

    Google Scholar 

  24. Pal M (2001) Intuitionistic fuzzy determinant. VUJ Phys Sci 7:87–93

    Google Scholar 

  25. Pal M, Khan SK, Amiya K (2002) Shyamal Intuitionistic fuzzy matrices. Notes Intuitionistic Fuzzy Sets 8(2):51–62

    MATH  Google Scholar 

  26. Peng J-J, Wang J-Q, Zhang H-Y, Chen X-H (2014) An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl Soft Comput 25:336– 346

    Article  Google Scholar 

  27. Peng J-J, Wang J-Q, Wang J, Zhang H-Y, Chen X-H (2016) Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int J Syst Sci 47(10):2342– 2358

    Article  Google Scholar 

  28. Peng J-J, Wang J-Q, Xiaohui W (2016) An extension of the ELECTRE approach with multi-valued neutrosophic information. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2411-8

    Article  Google Scholar 

  29. Ragab MZ, Emam EG (1995) The determinant and adjoint of a square fuzzy matrix. Inf Sci 84:209–220

    Article  MathSciNet  Google Scholar 

  30. Smarandache F (1999) A unifying field in logics. Neutrosophy, Neutrosophic probability, set and logic. American Research Press, Rehoboth

    MATH  Google Scholar 

  31. Şahin R, Liu P (2016) Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Computing and Applications. https://doi.org/10.1007/s00521-015-1995-8

    Article  Google Scholar 

  32. Thomson M (1977) Convergence of powers of a fuzzy matrix, vol 57. Elsevier

  33. Tian ZP, Wang J, Wang J, Zhang HY (2017) Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis Negot 26(3):597–627

    Article  Google Scholar 

  34. Tian ZP, Wang J, Zhang HY, Wang J (2016) Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-016-0552-9

    Article  Google Scholar 

  35. Uma R, Murugadas P, Sriram S (2016) Determinant theory of fuzzy neutrosophic soft matrices. Progress Nonlinear Dyn Chaos 4(2):85–102

    Google Scholar 

  36. Wang H, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Multisapace Multistructure 4:410–413

    MATH  Google Scholar 

  37. Wu XH, Wang J, Peng JJ, Chen XH (2016) Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int J Fuzzy Syst 18 (6):1104–1116

    Article  Google Scholar 

  38. Yang L, Li B (2016) A multi-criteria decision-making method using power aggregation operators for single-valued neutrosophic sets. Int J Database Theory Appl 9(2):23–32

    Article  Google Scholar 

  39. Ye J (2013) Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int J Gen Syst 42(4):386–394

    Article  MathSciNet  Google Scholar 

  40. Ye J (2014) Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl Math Model 38:1170–1175

    Article  MathSciNet  Google Scholar 

  41. Ye J (2014) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell fuzzy Syst 26(5):2459–2466

    MathSciNet  MATH  Google Scholar 

  42. Ye J (2014) Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making. Int J Fuzzy Syst 16(2):204–211

    Google Scholar 

  43. Ye J (2015) Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif Intell Med 63(3):171–179

    Article  Google Scholar 

  44. Ye J, Fu J (2016) Multi-period medical diagnosis method using a single valued neutrosophic similarity measure based on tangent function. Comput Method Programs Biomed 123:142–149

    Article  Google Scholar 

  45. Ye J (2017) Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput 21(3):815–825.ye-16

    Article  Google Scholar 

  46. Zhang Z, Wu C (2014) A novel method for single-valued neutrosophic multi-criteria decision making with incomplete weight information. Neutrosophic Sets Syst 4:35–49

    Google Scholar 

  47. Zhan J, Khan M, Gulistan M, Ali A (2017) Applications of neutrosophic cubic sets in multi-criteria decision making. Appl Neutrosophic Cubic Sets Multi-Criteria Decisi Making 7(5):377–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Karaaslan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendix A

Appendix A

1.1 A.1

  1. 1.

    Let \(\alpha =\mu \tilde \oplus \nu \) and \(\beta =\mu \tilde \odot \nu \). Then \(\alpha _{pq}^{t}=\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\) and \(\beta _{pq}^{t}=\mu _{pq}^{t}\nu _{pq}^{t}\). The proof will be made for membership, indeterminacy and non-membership degrees of elements of SVN-matrices.

    1. (a)

      Suppose that \(\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq \mu _{pq}^{t}\nu _{pq}^{t}\). Since \(0\leq \mu _{pq}^{t}\leq 1\) and \(0\leq \nu _{pq}^{t}\leq 1\), \(\mu _{pq}^{t}(1-\nu _{pq}^{t})+\nu _{pq}^{t}(1-\mu _{pq}^{t})\geq 0\). Hence \(\alpha _{pq}^{t}\geq \beta _{pq}^{t}\).

    2. (b)

      Suppose that \(\mu _{pq}^{i}\nu _{pq}^{i}\leq \mu _{pq}^{i}+\nu _{pq}^{i}-\mu _{pq}^{i}\nu _{pq}^{i}\). Since \(0\leq \mu _{pq}^{i}\leq 1\) and \(0\leq \nu _{pq}^{i}\leq 1\), \(0\leq \mu _{pq}^{i}(1-\nu _{pq}^{i})+\nu _{pq}^{i}(1-\mu _{pq}^{i})\). Hence \(\alpha _{pq}^{i}\leq \beta _{pq}^{i}\).

    3. (c)

      It can be shown that \(\alpha _{pq}^{f}\leq \beta _{pq}^{f} \) with similar way to proof of \(\alpha _{pq}^{i}\leq \beta _{pq}^{i} \).

  2. 2.

    Let \(\alpha =\mu \tilde \oplus \mu \). Then \(\alpha =(\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}, \mu _{pq}^{i}\nu _{pq}^{i},\mu _{pq}^{f}\nu _{pq}^{f})\). Since each of \(\mu _{pq}^{t},\mu _{pq}^{i},\mu _{pq}^{f}\), \(\nu _{pq}^{t}, \nu _{pq}^{t}\) and \(\nu _{pq}^{f}\) are in interval [0,1], it is clear that \(\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq \mu _{pq}^{t} \), \(\mu _{pq}^{i}\nu _{pq}^{i}\leq \mu _{pq}^{i}\) and \(\mu _{pq}^{f}\nu _{pq}^{f}\leq \mu _{pq}^{f}\). Therefore \(\mu \tilde \oplus \mu \succeq \mu \).

  3. 3.

    Let \(\alpha =\mu \tilde \odot \mu \). Then \(\alpha =(\mu _{pq}^{t}\mu _{pq}^{t}, \mu _{pq}^{i}+\mu _{pq}^{i}-\mu _{pq}^{i}\mu _{pq}^{i},\mu _{pq}^{f}+\mu _{pq}^{f}-\mu _{pq}^{f}\mu _{pq}^{f})\). Since \(\mu _{pq}^{t}\nu _{pq}^{t}\leq \mu _{pq}^{t}\), \(\mu _{pq}^{i}+\mu _{pq}^{i}-\mu _{pq}^{i}\mu _{pq}^{i}\geq \mu _{pq}^{i}\) and \(\mu _{pq}^{f}+\mu _{pq}^{f}-\mu _{pq}^{f}\mu _{pq}^{f}\geq \mu _{pq}^{f}\), \(\mu \tilde \odot \mu \preceq \mu \).

  4. 4.

    Let \(\alpha _{pq}=\langle \mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t},\mu _{pq}^{i}\nu _{pq}^{i},\mu _{pq}^{f}\nu _{pq}^{f}\rangle \) be an element of SVN-matrix \(\mu \tilde \oplus \nu \). From definition of \(\mu \tilde \ominus \nu \), we know that for truth-membership values of elements of SVN-matrix \(\mu \tilde \ominus \nu \), if \(\mu _{pq}^{t}\geq \nu _{pq}^{t}\), \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}=\mu _{pq}^{t}\) and if \(\mu _{pq}^{t}< \nu _{pq}^{t}\), \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}= 0\). Since \(\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq \mu _{pq}^{t}\) and \(\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq 0\), truth-membership values of elements of SVN-matrix \(\mu \tilde \oplus \nu \) are always greater than or equal to truth-membership values of elements of SVN-matrix \(\mu \tilde \ominus \nu \). From definition of \(\mu \tilde \ominus \nu \), if \(\mu _{pq}^{i}\geq \nu _{pq}^{i}\), \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}= 1\), and if \(\mu _{pq}^{i}< \nu _{pq}^{i}\), \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}\). Since \(1\geq \mu _{pq}^{i}\nu _{pq}^{i}\) and \(\mu _{pq}^{i}\geq \mu _{pq}^{i}\nu _{pq}^{i}\), indeterminacy-membership values of elements of SVN-matrix \(\mu \tilde \oplus \nu \) are always smaller than or equal to indeterminacy-membership values of elements of SVN-matrix \(\mu \tilde \ominus \nu \). Also, it can be shown that falsity-membership values of elements of SVN-matrix \(\mu \tilde \oplus \nu \) are always smaller than or equal to falsity-membership values of elements of SVN-matrix \(\mu \tilde \ominus \nu \). It is concluded that \(\mu \tilde \oplus \nu \tilde \succeq \mu \tilde \ominus \nu \).

  5. 5.

    Let αpq and βpq be the pq th elements of the SVN-matrices \(\mu \tilde \oplus (\nu \tilde \ominus \gamma )\) and \((\mu \tilde \oplus \nu )\tilde \ominus (\mu \tilde \oplus \gamma )\), respectively. The proof will be made for three cases.

    ᅟ:

    Case 1: For truth-membership values of the SVN-matrices. From Definition 6,

    $$\alpha_{pq}^{t}=\left\{ \begin{array}{ll} \mu_{pq}^{t}+\nu_{pq}^{t}-\mu_{pq}^{t}\nu_{pq}^{t}, & \nu_{pq}^{t}>\gamma_{pq}^{t}, \\ \mu_{pq}^{t}, & \nu_{pq}^{t}\leq \gamma_{pq}^{t}. \end{array} \right.$$

    Since \( \mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}> \mu _{pq}^{t}+\gamma _{pq}^{t}-\mu _{pq}^{t}\gamma _{pq}^{t}\) for \(\nu _{pq}^{t}> \gamma _{pq}^{t}\), and \( \mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\leq \mu _{pq}^{t}+\gamma _{pq}^{t}-\mu _{pq}^{t}\gamma _{pq}^{t}\) for \(\nu _{pq}^{t}\leq \gamma _{pq}^{t}\),

    $$\beta_{pq}^{t}=\left\{ \begin{array}{ll} \mu_{pq}^{t}+\nu_{pq}^{t}-\mu_{pq}^{t}\nu_{pq}^{t}, & \nu_{pq}^{t}> \gamma_{pq}^{t}, \\ 0, & \nu_{pq}^{t}\leq \gamma_{pq}^{t}. \end{array} \right.$$

    Hence \(\alpha _{pq}^{t}\geq \beta _{pq}^{t}\).

    ᅟ:

    Case 2: For indeterminacy-membership values of the SVN-matrices. From Definition 6,

    $$\alpha_{pq}^{i}=\left\{ \begin{array}{ll} \mu_{pq}^{i}, & \nu_{pq}^{i}\geq \gamma_{pq}^{i}, \\ \mu_{pq}^{i}\nu_{pq}^{i}, & \nu_{pq}^{i}< \gamma_{pq}^{i}. \end{array} \right.$$

    Since \(\mu _{pq}^{i}\nu _{pq}^{i}\geq \mu _{pq}^{i}\gamma _{pq}^{i}\) for \(\nu _{pq}^{i}\geq \gamma _{pq}^{i}\), and \(\mu _{pq}^{i}\nu _{pq}^{i}<\mu _{pq}^{i}\gamma _{pq}^{i}\) for \(\nu _{pq}^{i}< \gamma _{pq}^{i}\),

    $$\beta_{pq}^{i}=\left\{ \begin{array}{ll} 1, & \nu_{pq}^{i}\geq \gamma_{pq}^{i}, \\ \mu_{pq}^{i}\nu_{pq}^{i}, & \nu_{pq}^{i}< \gamma_{pq}^{i}. \end{array} \right.$$

    Thus \(\alpha _{pq}^{i}\leq \beta _{pq}^{i}\)

    ᅟ:

    Case 3: For falsity-membership values of the SVN-matrices. From Definition 6,

    $$\alpha_{pq}^{f}=\left\{ \begin{array}{ll} \mu_{pq}^{f}, & \nu_{pq}^{f}\geq \gamma_{pq}^{f}, \\ \mu_{pq}^{f}\nu_{pq}^{f}, & \nu_{pq}^{f}< \gamma_{pq}^{f}. \end{array} \right.$$

    Since \(\mu _{pq}^{f}\nu _{pq}^{f}\geq \mu _{pq}^{f}\gamma _{pq}^{f}\) for \(\nu _{pq}^{f}\geq \gamma _{pq}^{f}\), and \(\mu _{pq}^{f}\nu _{pq}^{f}<\mu _{pq}^{f}\gamma _{pq}^{f}\) for \(\nu _{pq}^{f}< \gamma _{pq}^{f}\),

    $$\beta_{pq}^{f}=\left\{ \begin{array}{ll} 1, & \nu_{pq}^{f}\geq \gamma_{pq}^{f}, \\ \mu_{pq}^{f}\nu_{pq}^{f}, & \nu_{pq}^{f}< \gamma_{pq}^{f}. \end{array} \right.$$

    Thus \(\alpha _{pq}^{f}\leq \beta _{pq}^{f}\) and αpqβpq.

    From Case 1,2 and 3, it is concluded that \(\mu \tilde \oplus (\nu \tilde \ominus \gamma )\tilde \succeq (\mu \tilde \oplus \nu )\tilde \ominus (\mu \tilde \oplus \gamma )\).

  6. 6.

    The proof can be made with similar way to proof of statement 1.

  7. 7.

    Let αpq, βpq, 𝜃pq, σpq, δpq, τpq, ρpq and 𝜖pq be pq th elements of \(\mu \tilde \oplus \gamma , \nu \tilde \oplus \gamma , \mu \tilde \odot \gamma , \nu \tilde \odot \gamma , \mu \tilde \otimes \gamma , \nu \tilde \otimes \gamma \) and \(\mu \tilde \ominus \gamma , \nu \tilde \ominus \gamma \), respectively. Since \(\mu \tilde \preceq \nu \), \(\mu _{pq}^{t}\leq \nu _{pq}^{t}, \mu _{pq}^{i}\geq \nu _{pq}^{i}\) and \(\mu _{pq}^{f}\geq \nu _{pq}^{f}\). It is clear that \(\alpha _{pq}^{t}=\mu _{pq}^{t}+\gamma _{pq}^{t}-\mu _{pq}^{t}\gamma _{pq}^{t}\leq \nu _{pq}^{t}+\gamma _{pq}^{t}-\nu _{pq}^{t}\gamma _{pq}^{t}=\beta _{pq}^{t}\), \(\alpha _{pq}^{i}=\mu _{pq}^{i}\gamma _{pq}^{i}\geq \nu _{pq}^{i}\gamma _{pq}^{i}=\beta _{pq}^{t}\) and \(\alpha _{pq}^{f}=\mu _{pq}^{f}\gamma _{pq}^{f}\geq \nu _{pq}^{f}\gamma _{pq}^{f}=\beta _{pq}^{f}\). Therefore αpqβpq and \(\mu \tilde \oplus \gamma \tilde \preceq \nu \tilde \oplus \gamma \).

    By given condition \(\theta _{pq}^{t}=\mu _{pq}^{t}\gamma _{pq}^{t}\leq \nu _{pq}^{t}\gamma _{pq}^{t}=\sigma _{pq}^{t}\), \(\theta _{pq}^{i}=\mu _{pq}^{i}+\gamma _{pq}^{i}-\mu _{pq}^{i}\gamma _{pq}^{i}\geq \nu _{pq}^{i}+\gamma _{pq}^{i}-\nu _{pq}^{i}\gamma _{pq}^{i}=\sigma _{pq}^{t}\) and \(\theta _{pq}^{f}=\mu _{pq}^{f}+\gamma _{pq}^{f}-\mu _{pq}^{f}\gamma _{pq}^{f}\geq \nu _{pq}^{f}+\gamma _{pq}^{f}-\nu _{pq}^{f}\gamma _{pq}^{f}=\sigma _{pq}^{f}\), 𝜃pqσpq. Therefore \(\mu \tilde \odot \gamma \tilde \preceq \nu \tilde \odot \gamma \).

    By given condition \(\delta _{pq}^{t}= 1-{\prod }_{k = 1}^{n}(1-(\mu _{pk}^{t} \gamma _{kq}^{t})) \leq 1-{\prod }_{k = 1}^{n}(1-(\nu _{pk}^{t} \gamma _{kq}^{t}))=\tau _{pq}^{t}\), \(\delta _{pq}^{i}={\prod }_{k = 1}^{n}(\mu _{pk}^{i} \gamma _{kq}^{i})\geq {\prod }_{k = 1}^{n}(\nu _{pk}^{i} \nu _{kq}^{i})=\tau _{pq}^{i}\) and \(\delta _{pq}^{f}={\prod }_{k = 1}^{n}(\mu _{pk}^{f} \gamma _{kq}^{f})\geq {\prod }_{k = 1}^{n}(\nu _{pk}^{f} \nu _{kq}^{f})=\tau _{pq}^{f}\), δpqτpq. Therefore \(\mu \tilde \otimes \gamma \tilde \preceq \nu \tilde \otimes \gamma \).

    Since

    $$\rho_{pq}^{t}=\left\{ \begin{array}{ll} \mu_{pq}^{t}, & \mu_{pq}^{t}\geq \gamma_{pq}^{t} \\ 0, & \mu_{pq}^{t}< \gamma_{pq}^{t} \end{array} \right. ,\quad \epsilon_{pq}^{t}=\left\{ \begin{array}{ll} \nu_{pq}^{t}, & \nu_{pq}^{t}\geq \gamma_{pq}^{t} \\ 0, & \nu_{pq}^{t}< \gamma_{pq}^{t} \end{array} \right. $$

    and \(\mu _{pq}^{t}\leq \nu _{pq}^{t}\) from hypothesis, \(\rho _{pq}^{t}\leq \epsilon _{pq}^{t}\). Also since

    $$\rho_{pq}^{i}=\left\{ \begin{array}{ll} 1, & \mu_{pq}^{i}\geq \gamma_{pq}^{i} \\ \mu_{pq}^{i}, & \mu_{pq}^{i}< \gamma_{pq}^{i} \end{array} \right. ,\quad \epsilon_{pq}^{i}=\left\{ \begin{array}{ll} 1, & \nu_{pq}^{i}\geq \gamma_{pq}^{i} \\ \nu_{pq}^{i}, & \nu_{pq}^{i}< \gamma_{pq}^{i} \end{array} \right. $$

    and \(\mu _{pq}^{i}\geq \nu _{pq}^{i}\) from hypothesis, \(\rho _{pq}^{i}\geq \epsilon _{pq}^{i}\).

    Similarly, \( \rho _{pq}^{f}=\left \{ \begin {array}{ll} 1, & \mu _{pq}^{f}\geq \gamma _{pq}^{f} \\ \mu _{pq}^{f}, & \mu _{pq}^{f}< \gamma _{pq}^{f} \end {array} \right . ,\quad \epsilon _{pq}^{f}=\left \{ \begin {array}{ll} 1, & \nu _{pq}^{f}\geq \gamma _{pq}^{f} \\ \nu _{pq}^{f}, & \nu _{pq}^{f}< \gamma _{pq}^{f} \end {array} \right . \) and \(\mu _{pq}^{f}\geq \nu _{pq}^{f}\) from hypothesis, \(\rho _{pq}^{f}\geq \epsilon _{pq}^{f}\). Therefore ρpq𝜖pq and so \(\mu \tilde \ominus \gamma \tilde \preceq \nu \tilde \ominus \gamma \).

1.2 A.2

  1. 1.

    Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t},\beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are ij th elements of \(\mu \tilde \oplus \nu \) and \(\mu ^{\prime } \tilde \oplus \nu ^{\prime }\), respectively. Then σpq = αqp is the pq th element of \((\mu \tilde \oplus \nu )'\) and

    $$\begin{array}{@{}rcl@{}} \alpha_{pq}&=&\langle\alpha_{pq}^{t},\alpha_{pq}^{i},\alpha_{pq}^{f}\rangle\\&=& \langle\mu_{pq}^{t}+\nu_{pq}^{t}-\mu_{pq}^{t}\nu_{pq}^{t},\mu_{pq}^{i}\nu_{pq}^{i},\mu_{pq}^{f}\nu_{pq}^{f}\rangle\\ \beta_{pq}&=&\langle\beta_{pq}^{t},\beta_{pq}^{i},\beta_{pq}^{f}\rangle\\&=& \langle\mu_{qp}^{t}+\nu_{qp}^{t}-\mu_{qp}^{t}\nu_{qp}^{t},\mu_{qp}^{i}\nu_{qp}^{i},\mu_{qp}^{f}\nu_{qp}^{f}\rangle\\ \sigma_{pq}&=&\langle\alpha_{qp}^{t},\alpha_{qp}^{i},\alpha_{qp}^{f}\rangle\\&=& \langle\mu_{qp}^{t}+\nu_{qp}^{t}\!-\mu_{qp}^{t}\nu_{qp}^{t},\mu_{qp}^{i}\nu_{qp}^{i},\mu_{qp}^{f}\nu_{qp}^{f}\rangle\\&=&\beta_{pq}. \end{array} $$

    Thus, σpq = βpq for all p, q. Hence \((\mu \tilde \oplus \nu )'=\mu ^{\prime } \tilde \oplus \nu ^{\prime }\).

  2. 2.

    Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t}, \beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are pq th elements of \(\mu \tilde \odot \nu \) and \(\mu ^{\prime } \tilde \odot \nu ^{\prime }\), respectively. Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t},\beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are pq th elements of \(\mu \tilde \odot \nu \) and \(\mu ^{\prime } \tilde \odot \nu ^{\prime }\), respectively. Then σpq = αqp is the pq th element of \((\mu \tilde \odot \nu )'\) and

    $$\begin{array}{@{}rcl@{}} \alpha_{pq}&=&\langle\alpha_{pq}^{t},\alpha_{pq}^{i},\alpha_{pq}^{f}\rangle\\&=& \langle\mu_{pq}^{t}\nu_{pq}^{t},\mu_{pq}^{i}+\nu_{pq}^{i}-\mu_{pq}^{i}\nu_{pq}^{i},\mu_{pq}^{f}+\nu_{pq}^{f}-\mu_{pq}^{f}\nu_{pq}^{f}\rangle\\ \beta_{pq}&=&\langle\beta_{pq}^{t},\beta_{pq}^{i},\beta_{pq}^{f}\rangle\\&=& \langle\mu_{qp}^{t}\nu_{qp}^{t},\mu_{qp}^{i}+\nu_{qp}^{i}-\mu_{qp}^{i}\nu_{qp}^{i},\mu_{qp}^{f}+\nu_{qp}^{f}-\mu_{qp}^{f}\nu_{qp}^{f}\rangle\\ \sigma_{pq}&=&\langle\sigma_{pq}^{t},\sigma_{pq}^{i},\sigma_{pq}^{f}\rangle\\&=& \langle\mu_{qp}^{t}\nu_{qp}^{t},\mu_{qp}^{i}+\nu_{qp}^{i}-\mu_{qp}^{i}\nu_{qp}^{i},\mu_{qp}^{f}+\nu_{qp}^{f}-\mu_{qp}^{f}\nu_{qp}^{f}\rangle\\ \end{array} $$

    Thus, σpq = βpq for all p, q. Hence \((\mu \tilde \odot \nu )'=\mu ^{\prime } \tilde \odot \nu ^{\prime }\).

  3. 3.

    Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t}, \beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are pq th elements of \(\mu \tilde \otimes \nu \) and \(\nu ^{\prime } \tilde \otimes \mu ^{\prime }\), respectively. Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t},\beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are ij th elements of \(\mu \tilde \otimes \nu \) and \( \nu ^{\prime } \tilde \otimes \mu ^{\prime }\), respectively. Then σpq = αqp is the pq th element of \((\mu \tilde \otimes \nu )'\) and

    $$\begin{array}{@{}rcl@{}} \alpha_{pq}&=&\langle\alpha_{pq}^{t},\alpha_{pq}^{i},\alpha_{pq}^{f}\rangle= \langle1-\prod\limits_{k = 1}^{n}(1-\mu_{pk}^{t}\nu_{kq}^{t}),\\ &&\prod\limits_{k = 1}^{n}(\mu_{pk}^{i}+\nu_{kq}^{i}-\mu_{pq}^{i}\nu_{pq}^{i}),\prod\limits_{k = 1}^{n}(\mu_{pq}^{f}+\nu_{pq}^{f}-\mu_{pq}^{f}\nu_{pq}^{f})\rangle\\ \beta_{pq}&=&\langle\beta_{pq}^{t},\beta_{pq}^{i},\beta_{pq}^{f}\rangle= \langle1-\prod\limits_{k = 1}^{n}(1-\nu_{qk}^{t}\mu_{kp}^{t}),\\ &&\prod\limits_{k = 1}^{n}(\nu_{qk}^{i}+\mu_{kp}^{i}-\nu_{qk}^{i}\mu_{kp}^{i}),\prod\limits_{k = 1}^{n}(\nu_{qk}^{f}+\mu_{kp}^{f}-\nu_{qk}^{f}\mu_{kp}^{f})\rangle\\ \sigma_{pq}&=&\langle\sigma_{pq}^{t},\sigma_{pq}^{i},\sigma_{pq}^{f}\rangle= \langle1-\prod\limits_{k = 1}^{n}(1-\mu_{qk}^{t}\nu_{kp}^{t}),\\ &&\prod\limits_{k = 1}^{n}(\mu_{qk}^{i}+\nu_{kp}^{i}-\mu_{qk}^{i}\nu_{kp}^{i}),\prod\limits_{k = 1}^{n}(\mu_{qk}^{f}+\nu_{kp}^{f}-\mu_{qk}^{f}\nu_{kp}^{f})\rangle\\ &=&\beta_{pq}. \end{array} $$

    Thus, σpq = βpq for all p, q. Hence \((\mu \tilde \otimes \nu )'=\nu ^{\prime } \tilde \otimes \mu ^{\prime }\).

  4. 4.

    Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t}, \beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are pq th elements of \(\mu \tilde \ominus \nu \) and \(\mu ^{\prime } \tilde \ominus \nu ^{\prime }\), respectively. Suppose that \(\alpha _{pq}=\langle \alpha _{pq}^{t},\alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t},\beta _{pq}^{i},\beta _{pq}^{f}\rangle \) are pq th elements of \(\mu \tilde \ominus \nu \) and \(\mu ^{\prime } \tilde \ominus \nu ^{\prime }\), respectively. Then σpq = αqp is the pq th element of \((\mu \tilde \ominus \nu )'\) and

    $$\begin{array}{@{}rcl@{}} \alpha_{pq}&=&\langle\alpha_{pq}^{t},\alpha_{pq}^{i},\alpha_{pq}^{f}\rangle\,=\, \langle\mu_{pq}^{t}\ominus\nu_{pq}^{t},\mu_{pq}^{i}\ominus\nu_{pq}^{i},\mu_{pq}^{f}\ominus\nu_{pq}^{f}\rangle,\\ \beta_{pq}&=&\langle\beta_{pq}^{t},\beta_{pq}^{i},\beta_{pq}^{f}\rangle= \langle\mu_{qp}^{t}\ominus\nu_{qp}^{t},\mu_{qp}^{i}\ominus\nu_{qp}^{i},\mu_{qp}^{f}\ominus\nu_{qp}^{f}\rangle,\\ \sigma_{pq}&=&\langle\sigma_{pq}^{t},\sigma_{pq}^{i},\sigma_{pq}^{f}\rangle= \langle\mu_{qp}^{t}\ominus\nu_{qp}^{t},\mu_{qp}^{i}\ominus\nu_{qp}^{i},\mu_{qp}^{f}\ominus\nu_{qp}^{f}\rangle,\\ &=&\beta_{pq}. \end{array} $$

    Thus, σpq = βpq for all p, q. Hence \((\mu \tilde \ominus \nu )'=\mu ^{\prime } \tilde \ominus \nu ^{\prime }\).

1.3 A.3

  1. 1.

    Let \(\alpha _{pq}=\langle \alpha _{pq}^{t}, \alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t}, \beta _{pq}^{i},\beta _{pq}^{f}\rangle \) be pq th elements of \(\mu \tilde \oplus \nu \) and \(\mu ^{c}\tilde \odot \nu ^{c}\), respectively, and let \(\sigma _{pq}=\alpha _{pq}^{c}\). Then

    $$\begin{array}{@{}rcl@{}} \alpha_{pq}&=&\left\langle\alpha_{pq}^{t},\alpha_{pq}^{i},\alpha_{pq}^{f}\right\rangle\,=\,\left\langle\mu_{pq}^{t}\,+\,\nu_{pq}^{t}\,-\,\mu_{pq}^{t}\nu_{pq}^{t},\mu_{pq}^{i}\nu_{pq}^{i},\mu_{pq}^{f}\nu_{pq}^{f}\right\rangle\\ \sigma_{pq}&=&\alpha_{pq}^{c}=\left\langle\alpha_{pq}^{f},1\,-\,\alpha_{pq}^{i},\alpha_{pq}^{t}\right\rangle= \left\langle\mu_{pq}^{f}\nu_{pq}^{f},1\,-\,\mu_{pq}^{i}\nu_{pq}^{i},\mu_{pq}^{t}\right.\\ &&\left.+~\nu_{pq}^{t}-\mu_{pq}^{t}\nu_{pq}^{t}\right\rangle\\ \end{array} $$
    $$\begin{array}{@{}rcl@{}} \beta_{pq}&=&\langle\beta_{pq}^{t}, \beta_{pq}^{i},\beta_{pq}^{f}\rangle\,=\,\left\langle\mu_{pq}^{f},1\,-\,\mu_{pq}^{i}, \mu_{pq}^{t}\right\rangle\odot\left\langle\nu_{pq}^{f},1\,-\,\nu_{pq}^{i}, \nu_{pq}^{t}\right\rangle\\ &=&\left\langle\mu_{pq}^{f}\nu_{pq}^{f},1-\mu_{pq}^{i}\nu_{pq}^{i}, \mu_{pq}^{t}+\nu_{pq}^{t}-\mu_{pq}^{t}\nu_{pq}^{t}\right\rangle. \end{array} $$

    Thus, σpq = βpq. Hence \((\mu \tilde \oplus \nu )^{c}=\mu ^{c}\tilde \odot \nu ^{c}\).

  2. 2.

    The proof can be proved by similar way to proof of 1.

  3. 3.

    Let \(\alpha _{pq}=\langle \alpha _{pq}^{t}, \alpha _{pq}^{i},\alpha _{pq}^{f}\rangle \) and \(\beta _{pq}=\langle \beta _{pq}^{t}, \beta _{pq}^{i},\beta _{pq}^{f}\rangle \) be pq th elements of \(\mu \tilde \ominus \nu \) and \(\mu ^{c}\tilde \ominus \nu ^{c}\), respectively, and let \(\sigma _{pq}=\alpha _{pq}^{c}\). Then,

    $$\begin{array}{@{}rcl@{}} \alpha_{pq}&=&\langle\alpha_{pq}^{t}, \alpha_{pq}^{i},\alpha_{pq}^{f}\rangle\\&=&\left\langle \left\{ \begin{array}{ll} \mu_{pq}^{t}, & \mu_{pq}^{t}> \nu_{pq}^{t} \\ 0, & \mu_{pq}^{t}\leq \nu_{pq}^{t} \end{array} \right.,\left\{ \begin{array}{ll} 1, & \mu_{pq}^{i}\geq \nu_{pq}^{i} \\ \mu_{pq}^{i}, & \mu_{pq}^{i}< \nu_{pq}^{i} \end{array} \right.,\left\{ \begin{array}{ll} 1, & \mu_{pq}^{f}\geq \nu_{pq}^{f} \\ \mu_{pq}^{t}, & \mu_{pq}^{f}<\nu_{pq}^{f} \end{array} \right.\right\rangle\\ \sigma_{pq}&=&\alpha_{pq}^{c}=\left\langle \left\{\begin{array}{ll} 1, & \mu_{pq}^{f}\geq \nu_{pq}^{f} \\ \mu_{pq}^{t}, & \mu_{pq}^{f}<\nu_{pq}^{f} \end{array} \right.,\left\{ \begin{array}{ll} 0, & \mu_{pq}^{i}\geq \nu_{pq}^{i} \\ 1-\mu_{pq}^{i}, & \mu_{pq}^{i}< \nu_{pq}^{i} \end{array} \right.,\left\{\begin{array}{ll} \mu_{pq}^{t}, & \mu_{pq}^{t}>\nu_{pq}^{t} \\ 0, & \mu_{pq}^{t}\leq \nu_{pq}^{t} \end{array} \right.\right\rangle\\ \beta_{pq}&=&\left\langle \mu_{pq}^{f},1-\mu_{pq}^{i}, \mu_{pq}^{t}\right\rangle \tilde\ominus \left\langle \nu_{pq}^{f},1-\nu_{pq}^{i}, \nu_{pq}^{t}\right\rangle\\ &=&\left\langle \left\{\begin{array}{ll} \mu_{pq}^{f}, & \mu_{pq}^{f}\geq \nu_{pq}^{f} \\ 0, & \mu_{pq}^{f}<\nu_{pq}^{f} \end{array} \right.,\left\{ \begin{array}{ll} 1-\mu_{pq}^{i}, & \mu_{pq}^{i}> \nu_{pq}^{i} \\ 1 & \mu_{pq}^{i}\leq \nu_{pq}^{i} \end{array} \right.,\left\{\begin{array}{ll} 1, & \mu_{pq}^{t}\geq \nu_{pq}^{t} \\ \mu_{pq}^{t}, & \mu_{pq}^{t}< \nu_{pq}^{t} \end{array} \right.\right\rangle. \end{array} $$

    For \(\mu _{pq}^{f}\geq \nu _{pq}^{f}\), since \(\mu _{pq}^{f}\leq 1\), \(1-\mu _{pq}^{i}\geq 0\), \(1\geq \mu _{pq}^{t}\) and \(0\leq \mu _{pq}^{f}\), \(1\geq 1-\mu _{pq}^{i}\), \(\mu _{pq}^{i}\geq 0\), σpqβpq. Thus \((\mu \tilde \ominus \nu )^{c}\tilde \succeq \mu ^{c} \tilde \ominus \nu ^{c}\).

1.4 A.4

  1. 1.

    Let αβ. Then αtβt, αiβi and αfβf. The proof will be made each of \(\mu _{ij}^{t},\mu _{pq}^{i}\) and \(\mu _{pq}^{f}\). Let \(\mu _{pq}^{t}\geq \beta ^{t}\). Then \((\mu _{pq}^{t})^{\beta ^{t}}= 1\). Since βtαt, \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\). Therefore \((\mu _{pq}^{t})^{\alpha ^{t}}=(\mu _{pq}^{t})^{\beta ^{t}}\). If \(\mu _{pq}^{t}< \beta ^{t}\), there are two cases.

    ᅟ:

    Case 1: If \(\mu _{pq}^{t}<\alpha ^{t}\leq \beta ^{t}\), then \((\mu _{pq}^{t})^{\beta ^{t}}= 0=(\mu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 2: If \(\alpha ^{t}\leq \mu _{pq}^{t}< \beta ^{t}\), then \((\mu _{pq}^{t})^{\beta ^{t}}= 0<1=(\mu _{pq}^{t})^{\alpha ^{t}}\). Thus, \((\mu _{pq}^{t})^{\beta ^{t}}\leq (\mu _{pq}^{t})^{\alpha ^{t}}\).

    Let \(\mu _{pq}^{i}\geq \beta ^{i}\). Then, there are two cases;

    ᅟ:

    Case 1: If \(\mu _{pq}^{i}\geq \alpha ^{i}\geq \beta ^{i}\), then \((\mu _{pq}^{i})^{\alpha ^{i}}=(\mu _{pq}^{i})^{\beta ^{i}}= 1\).

    ᅟ:

    Case 2: If \(\alpha ^{i}\geq \mu _{pq}^{i}\geq \beta ^{i}\), then \((\mu _{pq}^{i})^{\alpha ^{i}}= 0<(\mu _{pq}^{i})^{\beta ^{i}}= 1\). Also if \(\mu _{pq}^{i}< \beta ^{i}\), then \((\mu _{pq}^{i})^{\beta ^{i}}= 0\). Since βiαi, \(\mu _{pq}^{i}\leq \alpha ^{i}\), \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\). Thus, \((\mu _{pq}^{i})^{\beta ^{i}}\geq (\mu _{pq}^{i})^{\alpha ^{i}}\).

    Let \(\mu _{pq}^{f}\geq \beta ^{f}\). Then, there are two cases;

    ᅟ:

    Case 1: If \(\mu _{pq}^{f}\geq \alpha ^{f}\geq \beta ^{f}\), then \((\mu _{pq}^{f})^{\alpha ^{f}}=(\mu _{pq}^{f})^{\beta ^{f}}= 1\).

    ᅟ:

    Case 2: If \(\alpha ^{f}\geq \mu _{pq}^{f}\geq \beta ^{f}\), then \((\mu _{pq}^{f})^{\alpha ^{f}}= 0<(\mu _{pq}^{f})^{\beta ^{f}}= 1\). Also if \(\mu _{pq}^{f}< \beta ^{f}\), then \((\mu _{pq}^{f})^{\beta ^{f}}= 0\). Since βfαf, \(\mu _{pq}^{f}\leq \alpha ^{f}\), \((\mu _{pq}^{f})^{\alpha ^{f}}= 0\). Thus, \((\mu _{pq}^{f})^{\beta ^{f}}\geq (\mu _{pq}^{f})^{\alpha ^{f}}\).

    It is concluded that \(\mu ^{(\beta )}\tilde \preceq \mu ^{(\alpha )}\).

  2. 2.

    The proof can be made by similar way to proof of statement 1.

1.5 A.5

  1. 1.

    The proof will be made for truth, indeterminacy and falsity membership values of elements of SVN-matrices:

    ᅟ:

    Case 1: For truth-membership values:

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{t},\nu _{pq}^{t}\geq \alpha ^{t}\). Then, \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}=\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq \mu _{pq}^{t}\) and \(\nu _{pq}^{t}\). Therefore \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})\geq \alpha ^{t}\) and so \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})= 1\). Also, since \((\mu _{pq}^{t})^{\alpha }= 1\) and \((\nu _{pq}^{t})^{\alpha }= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}= 1\). Thus, \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}=(\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{t},\nu _{pq}^{t}< \alpha ^{t}\). Then, there are two cases: \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}<\alpha ^{t}\) or \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}\geq \alpha ^{t}\).

    ᅟ:

    1. If \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}<\alpha ^{t}\), \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}= 0\). Since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Hence \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}=(\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    2. If \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}= 1\). Since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Thus \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}\geq (\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 3: Let \(\mu _{pq}^{t}< \alpha ^{t} \) and \( \nu _{pq}^{t}\geq \alpha ^{t}\). Then \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}=\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq \alpha ^{t}\). Therefore \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}= 1\). Also, since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}= 1\). Thus, \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 4: Let \(\mu _{pq}^{t}\geq \alpha ^{t}\) and \( \nu _{pq}^{t}<\alpha ^{t}\). Then \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}=\mu _{pq}^{t}+\nu _{pq}^{t}-\mu _{pq}^{t}\nu _{pq}^{t}\geq \alpha ^{t}\). Therefore \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}= 1\). Also, since \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}= 1\). Thus, \((\mu _{pq}^{t}\oplus \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\oplus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 2: For indeterminacy-membership values:

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{i},\nu _{pq}^{i}> \alpha ^{i}\). Then, there are two cases: \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}\leq \alpha ^{i}\) or \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}>\alpha ^{i}\).

    ᅟ:

    1. If \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}\leq \alpha ^{i}\), then \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\). Hence \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}\leq (\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    2. If \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}>\alpha ^{i}\), \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 1\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\). Thus \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}=(\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{i},\nu _{pq}^{i}\leq \alpha ^{i}\). Then, \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}\leq \alpha ^{i}\) and so \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Thus \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}=(\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 3: Let \(\mu _{pq}^{i}\leq \alpha ^{i} \) and \( \nu _{pq}^{i}>\alpha ^{i}\). If \(\mu _{pq}^{i}= 0\), Then \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}= 0\leq \alpha ^{i}\). Therefore \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Thus, \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\). If \(\mu _{pq}^{i}\not = 0\), then \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}\leq \alpha ^{i}\) and so \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Thus, \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 4: Let \(\mu _{pq}^{i}> \alpha ^{i}\) and \( \nu _{pq}^{i}\leq \alpha ^{i}\). If \(\nu _{pq}^{i}= 0\), Then \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}= 0\leq \alpha ^{i}\). Therefore \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Thus, \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\). If \(\nu _{pq}^{i}\not = 0\), then \(\mu _{pq}^{i}\oplus \nu _{pq}^{i}=\mu _{pq}^{i}\nu _{pq}^{i}\leq \alpha ^{i}\) and so \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Thus, \((\mu _{pq}^{i}\oplus \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\oplus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Case 3: For indeterminacy-membership values: The proof can be made by similar way to proof of case 2.

    When it is considered all of the cases, it is concluded that \((\mu \tilde \oplus \nu )^{(\alpha )}\tilde \succeq \mu ^{(\alpha )}\tilde \oplus \nu ^{(\alpha )}\).

  2. 2.

    The proof can be made by similar way to proof of statement 1.

1.6 A.6

  1. 1.

    The proof will be made for truth, indeterminacy and falsity-memberships values of elements of SVN-matrices.

    ᅟ:

    1. For truth-membership values: There are four cases,

    ᅟ:

    Case 1: \(\mu _{pq}^{t}, \nu _{pq}^{t}\geq \alpha ^{t}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{t}> \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}=\mu _{pq}^{t}\). Since \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\ominus \nu _{pq}^{t} )^{\alpha ^{t}}= 1\). Also since \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}\geq (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{t}\leq \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}= 0\). Since 0 ≤ αt, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= 0\) or 1. Also since \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}\geq (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 2: \(\mu _{pq}^{t}, \nu _{pq}^{t}<\alpha ^{t}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{t}> \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}=\mu _{pq}^{t}\). Since \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\ominus \nu _{pq}^{t} )^{\alpha ^{t}}= 1\). Also since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}\geq (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{t}\leq \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}= 0\). Since 0 ≤ αt, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= 0\) or 1. Also since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Therefore, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}\geq (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 3: Let \(\mu _{pq}^{t}< \alpha ^{t} \) and \( \nu _{pq}^{t}\geq \alpha ^{t}\). Then, \(\mu _{pq}^{t}<\nu _{pq}^{t}\) and \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= 0\). Also, since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}= 0\ominus 1 = 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 4: Let \(\mu _{pq}^{t}\geq \alpha ^{t}\) and \( \nu _{pq}^{t}<\alpha ^{t}\). Then, \(\mu _{pq}^{t}>\nu _{pq}^{t}\) and \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})=\mu _{pq}^{t}\). Since \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= 1\). Also, since \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}= 1\ominus 0 = 1\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    For indeterminacy-membership values: There are four cases,

    ᅟ:

    Case 1: \(\mu _{pq}^{i}, \nu _{pq}^{i}> \alpha ^{i}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{i}\geq \nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}= 1\). Since 1 ≥ αi, \((\mu _{pq}^{i}\ominus \nu _{pq}^{i} )^{\alpha ^{i}}= 1 \, or \, 0\). Also since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}\leq (\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{i}<\nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Since \(\mu _{pq}^{i}> \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}= 1\). Also since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Case 2: \(\mu _{pq}^{i}, \nu _{pq}^{i}\leq \alpha ^{i}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{i}\geq \nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}= 1\). Since \(\mu _{pq}^{i}\leq \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i} )^{\alpha ^{i}}= 0\). Also since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\). Hence, \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}\leq (\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{i}<\nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Since \(\mu _{pq}^{i}\leq \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Also since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}\leq (\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Case 3: Let \(\mu _{pq}^{i}\leq \alpha ^{i} \) and \( \nu _{pq}^{i}>\alpha ^{i}\). Then, \(\mu _{pq}^{i}<\nu _{pq}^{i}\) and \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Since \(\mu _{pq}^{i}\leq \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Also, since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}= 0\ominus 1 = 0\). Thus, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\ominus (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 4: Let \(\mu _{pq}^{i}> \alpha ^{i}\) and \( \nu _{pq}^{i}\leq \alpha ^{i}\). Then, \(\mu _{pq}^{i}>\nu _{pq}^{i}\) and \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})= 1\). Since 1 ≥ αt, \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}= 1\) or 0. Also, since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}= 1\ominus 0 = 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})^{\alpha ^{i}}\leq (\mu _{pq}^{i})^{\alpha ^{i}}\ominus (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    For falsity-membership values: The proof can be made in similar way to the proof made for indeterminacy-membership values. When it is considered all of cases, it is concluded that \((\mu \tilde \ominus \nu )^{(\alpha )}\tilde \succeq (\mu )^{(\alpha )} \tilde \ominus (\nu )^{(\alpha )}. \)

    ᅟ:

    The proof will be made for truth, indeterminacy and falsity-memberships values of elements of SVN-matrices.

    ᅟ:

    1. For truth-membership values: There are four cases,

    ᅟ:

    Case 1: \(\mu _{pq}^{t}, \nu _{pq}^{t}\geq \alpha ^{t}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{t}> \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}=\mu _{pq}^{t}\). Since \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\ominus \nu _{pq}^{t} )_{\alpha ^{t}}=\mu _{pq}^{t}\). Also since \((\mu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\) and \((\nu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\), \((\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}= 0\). Therefore, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}\geq (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{t}\leq \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}= 0\). Since 0 ≤ αt, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}= 0\) or \(\mu _{pq}^{t}\). Also since \((\mu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\) and \((\nu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\), \((\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}= 0\). Therefore, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}\geq (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

    ᅟ:

    Case 2: \(\mu _{pq}^{t}, \nu _{pq}^{t}<\alpha ^{t}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{t}> \nu _{pq}^{t}\). Then, \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}=\mu _{pq}^{t}\). Since \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\ominus \nu _{pq}^{t} )_{\alpha ^{t}}=\mu _{pq}^{t}\). Also since \((\mu _{pq}^{t})_{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})_{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}= 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}\geq (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{t}\leq \nu _{pq}^{t}\). Then \(\mu _{pq}^{t}\ominus \nu _{pq}^{t}= 0\). Since 0 ≤ αt, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}= 0\) or \(\mu _{pq}^{t}\). Also since \((\mu _{pq}^{t})_{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})_{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}= 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}\geq (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

    ᅟ:

    Case 3: Let \(\mu _{pq}^{t}< \alpha ^{t} \) and \( \nu _{pq}^{t}\geq \alpha ^{t}\). Then, \(\mu _{pq}^{t}<\nu _{pq}^{t}\) and \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})= 0\). Since 0 ≤ αt, \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}= 0\) or \(\mu _{pq}^{t}\). Also, since \((\mu _{pq}^{t})_{\alpha ^{t}}= 0\) and \((\nu _{pq}^{t})_{\alpha ^{t}}=\nu _{pq}^{t}\), \((\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}= 0\ominus \nu _{pq}^{t}= 0\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}\geq (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

    ᅟ:

    Case 4: Let \(\mu _{pq}^{t}\geq \alpha ^{t}\) and \( \nu _{pq}^{t}<\alpha ^{t}\). Then, \(\mu _{pq}^{t}>\nu _{pq}^{t}\) and \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})=\mu _{pq}^{t}\). Since \(\mu _{pq}^{t}\geq \alpha ^{t}\), \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\). Also, since \((\mu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\) and \((\nu _{pq}^{t})_{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}=\mu _{pq}^{t}\ominus 0=\mu _{pq}^{t}\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}= (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

  2. 2.

    For indeterminacy-membership values: There are four cases,

    ᅟ:

    Case 1: \(\mu _{pq}^{i}, \nu _{pq}^{i}> \alpha ^{i}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{i}\geq \nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}= 1\). Since 1 ≥ αi, \((\mu _{pq}^{i}\ominus \nu _{pq}^{i} )_{\alpha ^{i}}= 1 \) or \(\mu _{pq}^{i}\). Also since \((\mu _{pq}^{i})_{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})_{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}\leq (\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{i}<\nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Since \(\mu _{pq}^{i}> \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}= 1\). Also since \((\mu _{pq}^{i})_{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})_{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}= (\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}\).

    ᅟ:

    Case 2: \(\mu _{pq}^{i}, \nu _{pq}^{i}\leq \alpha ^{i}\).

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{i}\geq \nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}= 1\). Since 1 ≥ αi, \((\mu _{pq}^{i}\ominus \nu _{pq}^{i} )_{\alpha ^{i}}= 1\) or \(\mu _{pq}^{i}\). Also since \((\mu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\) and \((\nu _{pq}^{i})_{\alpha ^{i}}=\nu _{pq}^{i}\), \((\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\ominus \nu _{pq}^{i}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}\leq (\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{i}<\nu _{pq}^{i}\). Then \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Since \(\mu _{pq}^{i}\leq \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\). Also since \((\mu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\) and \((\nu _{pq}^{i})_{\alpha ^{i}}=\nu _{pq}^{i}\), \((\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}= (\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}\).

    ᅟ:

    Case 3: Let \(\mu _{pq}^{i}\leq \alpha ^{i} \) and \( \nu _{pq}^{i}>\alpha ^{i}\). Then, \(\mu _{pq}^{i}<\nu _{pq}^{i}\) and \(\mu _{pq}^{i}\ominus \nu _{pq}^{i}=\mu _{pq}^{i}\). Since \(\mu _{pq}^{i}\leq \alpha ^{i}\), \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\). Also, since \((\mu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\) and \((\nu _{pq}^{i})_{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}=\mu _{pq}^{i}\ominus 1 = 1\) or \(\mu _{pq}^{i}\). Therefore \((\mu _{pq}^{t}\ominus \nu _{pq}^{t})_{\alpha ^{t}}\leq (\mu _{pq}^{t})_{\alpha ^{t}}\ominus (\nu _{pq}^{t})_{\alpha ^{t}}\).

    ᅟ:

    Case 4: Let \(\mu _{pq}^{i}> \alpha ^{i}\) and \( \nu _{pq}^{i}\leq \alpha ^{i}\). Then, \(\mu _{pq}^{i}>\nu _{pq}^{i}\) and \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})= 1\). Since 1 ≥ αt, \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}= 1\) or \(\mu _{pq}^{i}\). Also, since \((\mu _{pq}^{i})_{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})_{\alpha ^{i}}=\nu _{pq}^{i}\), \((\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}= 1\ominus \nu _{pq}^{i}= 1\). Therefore \((\mu _{pq}^{i}\ominus \nu _{pq}^{i})_{\alpha ^{i}}= (\mu _{pq}^{i})_{\alpha ^{i}}\ominus (\nu _{pq}^{i})_{\alpha ^{i}}\).

    ᅟ:

    3. For falsity-membership values: The proof can be made in similar way to the proof made for indeterminacy-membership values.When it is considered all of cases, it is concluded that \((\mu \tilde \ominus \nu )_{(\alpha )}\tilde \succeq (\mu )_{(\alpha )} \tilde \ominus (\nu )_{(\alpha )}. \)

1.7 A.7

  1. 1.

    The proof will be made for truth, indeterminacy and falsity membership values of elements of SVN-matrices:

    ᅟ:

    Case 1: For truth-membership values:

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{t},\nu _{pq}^{t}\geq \alpha ^{t}\). Then, \(\mu _{pq}^{t}\oplus \nu _{pq}^{t}=\mu _{pq}^{t}\nu _{pq}^{t}\geq \alpha ^{t}\) or \(\mu _{pq}^{t}\nu _{pq}^{t}> \alpha ^{t}\).

    If \(\mu _{pq}^{t}\nu _{pq}^{t}\geq \alpha ^{t}\), then \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= 1\). Since \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}= 1\). Thus \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}=(\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}\).

    If \(\mu _{pq}^{t}\nu _{pq}^{t}< \alpha ^{t}\), then \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= 0\). Since \((\mu _{pq}^{t})^{\alpha ^{t}}= 1\) and \((\nu _{pq}^{t})^{\alpha ^{t}}= 1\), \((\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}= 1\). Hence \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}<(\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{t},\nu _{pq}^{t}< \alpha ^{t}\). Then, \(\mu _{pq}^{t}\nu _{pq}^{t}=\mu _{pq}^{t}\odot \nu _{pq}^{t}<\alpha ^{t}\) and so \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= 0\). Since \(\mu _{pq}^{t}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\odot (\mu _{pq}^{t})^{\alpha ^{t}}=(\mu _{pq}^{t})^{\alpha ^{t}}(\mu _{pq}^{t})^{\alpha ^{t}}= 0\). Therefore \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}=(\mu _{pq}^{t})^{\alpha ^{t}}\odot (\mu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 3: Let \(\mu _{pq}^{t}< \alpha ^{t} \) and \( \nu _{pq}^{t}\geq \alpha ^{t}\). Then \(\mu _{pq}^{t}\odot \nu _{pq}^{t}=\mu _{pq}^{t}\nu _{pq}^{t}\geq \alpha ^{t}\). Therefore \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= 0\). Since \((\mu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Hence, \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Subcase 4: Let \(\mu _{pq}^{t}\geq \alpha ^{t}\) and \( \nu _{pq}^{t}<\alpha ^{t}\). Then \(\mu _{pq}^{t}\odot \nu _{pq}^{t}=\mu _{pq}^{t}\nu _{pq}^{t}< \alpha ^{t}\). Therefore \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= 0\). Since \((\nu _{pq}^{t})^{\alpha ^{t}}= 0\), \((\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}= 0\). Thus, \((\mu _{pq}^{t}\odot \nu _{pq}^{t})^{\alpha ^{t}}= (\mu _{pq}^{t})^{\alpha ^{t}}\odot (\nu _{pq}^{t})^{\alpha ^{t}}\).

    ᅟ:

    Case 2: For indeterminacy-membership values:

    ᅟ:

    Subcase 1: Let \(\mu _{pq}^{i},\nu _{pq}^{i}> \alpha ^{i}\). Then, \(\mu _{pq}^{i}\odot \nu _{pq}^{i}=\mu _{pq}^{i}+\nu _{pq}^{i}-\mu _{pq}^{i}+\nu _{pq}^{i}>\alpha ^{i}\) and so \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= 1\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}= 1 + 1-1 = 1\). Thus \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}=(\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 2: Let \(\mu _{pq}^{i},\nu _{pq}^{i}\leq \alpha ^{i}\). Then, there are two cases:

    ᅟ:

    1. If \(\mu _{pq}^{i}\odot \nu _{pq}^{i}=\mu _{pq}^{i}+\nu _{pq}^{i}-\mu _{pq}^{i}\nu _{pq}^{i}\leq \alpha ^{i}\), then \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= 0\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Therefore \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}=(\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    2. If \(\mu _{pq}^{i}\odot \nu _{pq}^{i}=\mu _{pq}^{i}+\nu _{pq}^{i}-\mu _{pq}^{i}\nu _{pq}^{i}>\alpha ^{i}\), then \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= 1\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}= 0\). Hence \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}>(\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 3: Let \(\mu _{pq}^{i}\leq \alpha ^{i} \) and \( \nu _{pq}^{i}>\alpha ^{i}\). Then \(\mu _{pq}^{i}\odot \nu _{pq}^{i}=\mu _{pq}^{i}+\nu _{pq}^{i}-\mu _{pq}^{i}\nu _{pq}^{i}> \alpha ^{i}\) and so \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= 1\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 0\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 1\), \((\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}= 0 + 1-0 = 1\). Thus, \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Subcase 4: Let \(\mu _{pq}^{i}> \alpha ^{i}\) and \( \nu _{pq}^{i}\leq \alpha ^{i}\). Then \(\mu _{pq}^{i}\odot \nu _{pq}^{i}=\mu _{pq}^{i}+\nu _{pq}^{i}-\mu _{pq}^{i}\nu _{pq}^{i}> \alpha ^{i}\) and so \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= 1\). Since \((\mu _{pq}^{i})^{\alpha ^{i}}= 1\) and \((\nu _{pq}^{i})^{\alpha ^{i}}= 0\), \((\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}= 1 + 0-0\). Thus, \((\mu _{pq}^{i}\odot \nu _{pq}^{i})^{\alpha ^{i}}= (\mu _{pq}^{i})^{\alpha ^{i}}\odot (\nu _{pq}^{i})^{\alpha ^{i}}\).

    ᅟ:

    Case 3: For falsity-membership values: The proof can be made by similar way to proof of case 2.When it is considered all of the cases, it is concluded that \((\mu \tilde \odot \nu )^{(\alpha )}\tilde \preceq \mu ^{(\alpha )}\tilde \odot \nu ^{(\alpha )}\).

  2. 2.

    The proof can be made by similar way to proof of statement 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaaslan, F., Hayat, K. Some new operations on single-valued neutrosophic matrices and their applications in multi-criteria group decision making. Appl Intell 48, 4594–4614 (2018). https://doi.org/10.1007/s10489-018-1226-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1226-y

Keywords

Navigation