Applied Intelligence

, Volume 48, Issue 5, pp 1379–1393 | Cite as

Automated detection of retinal health using PHOG and SURF features extracted from fundus images

  • Joel E. W. Koh
  • Eddie Y. K. Ng
  • Sulatha V. Bhandary
  • Augustinus Laude
  • U. Rajendra Acharya
Article
  • 137 Downloads

Abstract

Many health-related problems arise with aging. One of the diseases that is prevalent among the elderly is the loss of sight. Various eye diseases, namely age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are the prime causes of vision loss as we grow old. Nevertheless, early detection of such eye diseases can impede the progression of this problem. Therefore, the elderly are encouraged to attend regular eye checkups for early detection of eye diseases. However, it is time-consuming and laborious to conduct a mass eye screening session frequently. Hence, we proposed a novel approach to develop an automated retinal health screening system in this work. This paper discusses a retinal screening system to automatically differentiate normal image from abnormal (AMD, DR, and glaucoma) fundus images. The fundus images are subjected to the pyramid histogram of oriented gradients (PHOG) and speeded up robust features (SURF) techniques. Then, the extracted data are subjected to adaptive synthetic sampling to balance the number of data in the two classes (normal and abnormal). Subsequently, we employed the canonical correlation analysis approach to fuse the highly-correlated features extracted from the two (PHOG and SURF) descriptors. We have achieved 96.21% accuracy, 95.00% sensitivity, and 97.42% specificity with ten-fold cross-validation strategy using k-nearest neighbor (kNN) classifier. This novel algorithm has high potential in the diagnosis of normal eyes during the mass eye screening session or in polyclinics quickly and reliably. Hence, the patients having abnormal eyes can be sent to the main hospitals which will reduce the workload for the ophthalmologists.

Graphical Abstract

Proposed system

Keywords

Fundus Eye PHOG SURF Classifier PSO Glaucoma AMD Diabetes retinopathy 

Notes

Acknowledgements

Authors would like to thank the Social Innovation Research Fund (Project Title: Automated Eye Screening: A Direct Approach for Referral), Singapore for providing us a grant for this research. We would also like to express our sincere thanks to Manipal University, Manipal, India for providing us the images for this study.

References

  1. 1.
    Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, Quellec G (2010) Automated early detection of diabetic retinopathy. Ophthalmology 117(6):1147–1154CrossRefGoogle Scholar
  2. 2.
    Abràmoff MD, Suttorp-Schulten MSA (2005) Web-based screening for diabetic retinopathy in a primary care population. The EyeCheck project Telemedicine and e-Health 11(6):668–674CrossRefGoogle Scholar
  3. 3.
    Acharya UR, Chua KC, Ng EYK, Yu W, Chee C (2008) Application of higher order spectra identification of diabetes retinopathy stages. J Med Syst 32(6):481–488CrossRefGoogle Scholar
  4. 4.
    Acharya UR, Ng EYK, Suri JS (2008) Image modeling of the human eye, Artech HouseGoogle Scholar
  5. 5.
    Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. In: Proceedings of the institution of mechanical engineers, part H: journal of engineering in medicine, vol 223, pp 545–553Google Scholar
  6. 6.
    Acharya UR, Dua S, Du X, Sree VS, Chua KC (2011) Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Transactions on Information Technology in biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society 15(3):449–455CrossRefGoogle Scholar
  7. 7.
    Acharya UR, Ng EYK, Tan JH, Sree SV, Ng KH (2012) An integrated index for the identification of diabetic retinopathy stages using texture parameters. J Med Syst 36(3):2011–2020CrossRefGoogle Scholar
  8. 8.
    Acharya UR, Ng EYK, Lim WJE, Noronha KP, Lim CM, Nayak KP, Bhandary SV (2015) Decision support system for the glaucoma using Gabor transformation. Biomed Signal Process Control 15:18–26CrossRefGoogle Scholar
  9. 9.
    Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Bhandary SV, Rao AK, Fujita H, Hagiwara Y, Chua KC (2016) Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Comput Biol Med 75:54–62CrossRefGoogle Scholar
  10. 10.
    Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Noronha K, Bhandary SV, Rao AK, Hagiwara Y, Chua KC, Laude A (2016) Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Comput Biol Med 73:131–140CrossRefGoogle Scholar
  11. 11.
    Acharya UR, Bhat S, Koh JEW, Bhandary SV, Adeli H (2017) A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput Biol Med 88:72–83CrossRefGoogle Scholar
  12. 12.
    Acharya UR, Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Rao AK, Raghavendra U (2017) Automated screening method for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. J Comput Sci 20:41–51Google Scholar
  13. 13.
    Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Bhandary SV, Rao AK, Hagiwara Y, Chua KC, Laude A (2017) Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index. Comput Biol Med 84:59–68CrossRefGoogle Scholar
  14. 14.
    Agurto C, Murray V, Barriga E, Murillo S, Pattichis M, Davis H, Russell S, Abràmoff M, Soliz P (2010) Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging 29(2):502–512CrossRefGoogle Scholar
  15. 15.
    Agurto C, Barriga ES, Murray V, Nemeth S, Crammer R, Bauman W, Zamora G, Pattichis MS, Soliz P (2011) Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Investig Ophthalmol Vis Sci 52(8):5862–5871CrossRefGoogle Scholar
  16. 16.
    Antal B, Hajdu A (2012) An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng 59(6):1720–1726CrossRefGoogle Scholar
  17. 17.
    Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF Speeded up robust features. Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  18. 18.
    Bock R, Meier J, Nyul LG, Hornegger J, Michelson G (2010) Glaucoma risk index: Automated glaucoma detection from color fundus images. Med Image Anal 14:471–481CrossRefGoogle Scholar
  19. 19.
    Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM international conference on image and video retrieval, pp 410–408Google Scholar
  20. 20.
    Boyd K, McKinney JK (2017) What is glaucoma? American Academy of Ophthalmology. https://www.aao.org/eye-health/diseases/what-is-glaucoma. (last accessed 24 May 2017)
  21. 21.
    Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27CrossRefMATHGoogle Scholar
  22. 22.
    Dua S, Acharya UR, Chowriappa P, Sree SV (2012) Wavelet based energy features for glaucomatous image classification. IEEE Trans Inf Technol Biomed 16(1):80–87CrossRefGoogle Scholar
  23. 23.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New YorkMATHGoogle Scholar
  24. 24.
    Faust O, Acharya UR, Ng EYK, Ng KH, Suri JS (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36(1):145–157CrossRefGoogle Scholar
  25. 25.
    Fraser CE, D’Amico DJ, Nathan DM, Trobe J, Mulder JE (2017) Diabetic retinopathy: Classification and clinical features. UpToDate. http://www.uptoyear.com/contents/diabetic-retinopathy-classification-and-clinical-features. (last accessed 12 May 2017)
  26. 26.
    Ganesan K, Martis RJ, Acharya UR, Chua KC, Lim CM, Ng EYK, Laude A (2014) Computer-aided diabetic retinopathy detection using trace transform on digital fundus images. Biomedical and Biological Engineer 52:663–672Google Scholar
  27. 27.
    Garcia V, Sánchez JS, Mollineda RA (2012) On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl-Based Syst 25(1):13–21CrossRefGoogle Scholar
  28. 28.
    Gardner GG, Keating D, Williamson TH, Elliott AT (1996) Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol 840:940–944CrossRefGoogle Scholar
  29. 29.
    Group ETDRSR (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs: An extension of the modified Airlie house classification. Ophthalmology 98(10):786–806Google Scholar
  30. 30.
    Haddrill M, Slonim C All about vision What is age-related macular degeneration? http://www.allaboutvision.com/conditions/amd.htm. (last accessed 24 2017)
  31. 31.
    He H, Bai Y, Garcia E A, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, 2008, pp. 1322–1328. http://doi.org/10.1109/IJCNN.2008.4633969
  32. 32.
    Hijazi MHA, Coenen F, Zheng Y (2012) Data mining techniques for the screening of age-related macular degeneration. Knowl-Based Syst 29:83–92CrossRefGoogle Scholar
  33. 33.
    Hijazi MHA, Coenen F, Zheng Y (2014) Data mining for AMD screening: A classification based approach. Int J Simul Syst Sci Technol 15(2):57–69Google Scholar
  34. 34.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1945Google Scholar
  35. 35.
    Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Kaufmann Publishers Evolutionary Computation Series, San Francisco, Calif, USA MorganGoogle Scholar
  36. 36.
    Koh JEW, Acharya UR, Hagiwara Y, Raghavendra U, Tan JH, Sree SV, Bhandary SV, Rao A, Sivaprasad S, Chua KC, Laude A, Tong L (2017) Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Comput Biol Med 84:89–97CrossRefGoogle Scholar
  37. 37.
    Kolar R, Jan J (2008) Detection of glaucomatous eye via color fundus images using fractal dimensions. Radio Eng 17(3):109–114Google Scholar
  38. 38.
    Köse C, Şevik U, Gençalioğlu O (2008) Automatic segmentation of age-related macular degeneration in retinal fundus images. Comput Biol Med 38(5):611–619CrossRefGoogle Scholar
  39. 39.
    Köse C, Şevik U, Gençalioğlu O, İkibaş C, Kayikiçioğlu T (2010) A statistical segmentation method for measuring age-related macular degeneration in retinal fundus images. J Med Syst 34(1):1–13CrossRefGoogle Scholar
  40. 40.
    Lim TH, Laude A (2007) Age-related macular degeneration – An Asian perspective. In: Proceedings of the eye institute 3 rd, research day, vol 36, pp S15–S21Google Scholar
  41. 41.
    Maheshwari S, Pachori RB, Acharya UR (2017) Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE Journal of Biomedical and Health Informatics 21(3):803–813CrossRefGoogle Scholar
  42. 42.
    Maheshwari S, Pachori RB, Kanhangad V, Bhandary SV, Acharya UR (2017) Iterative variational mode decomposition based automated detection of glaucoma using fundus images computers in biology and medicine. http://doi.org/10.1016/j.compbiomed.2017.06.017
  43. 43.
    Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl-Based Syst 33:73–82CrossRefGoogle Scholar
  44. 44.
    Mookiah MRK, Acharya UR, Martis RJ, Chua KC, Lim CM, Ng EYK, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading. A hybrid feature extraction approach, Knowledge-Based Systems 39:9–22CrossRefGoogle Scholar
  45. 45.
    Mookiah MRK, Acharya UR, Koh JEW, Chandran V, Chua KC, Tan JH, Lim CM, Ng EYK, Noronha K, Tong L, Laude A (2014) Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images. Comput Biol Med 53:55–64CrossRefGoogle Scholar
  46. 46.
    Mookiah MRK, Acharya UR, Koh JEW, Chua KC, Tan JH, Chandran V, Lim CM, Noronha K, Laude A, Tong L (2014) Decision support system for age-related macular degeneration using discrete wavelet transform. Med Biol Eng Comput 52(9):781– 796CrossRefGoogle Scholar
  47. 47.
    Mookiah MRK, Acharya UR, Fujita H, Koh JEW, Tan JH, Chua KC, Bhandary SV, Noronha K, Laude A, Tong L (2015) Automated detection of age-related macular degeneration using empirical mode decomposition. Knowl-Based Syst 89:654–668CrossRefGoogle Scholar
  48. 48.
    Mookiah MRK, Acharya UR, Fujita H, Koh JEW, Tan JH, Noronha K, Bhandary SV, Chua KC, Lim CM, Laude A, Tong L (2015) Local configuration pattern features for age-related macular degeneration characterization and classification. Comput Biol Med 63:208–218CrossRefGoogle Scholar
  49. 49.
    Nayak J, Bhat PS, Acharya UR, Lim CM, Kagathi M (2007) Automated identification of diabetic retinopathy stages using digital fundus images. J Med Syst 32(2):107–115CrossRefGoogle Scholar
  50. 50.
    Nayak J, Acharya UR, Bhat PS, Shetty N, Min TC (2009) Automated diagnosis of glaucoma using fundus images. J Med Syst 33(5):337–346CrossRefGoogle Scholar
  51. 51.
    Niemeijer M, et al (2010) Retinopathy Online Challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 29(1):185–195CrossRefGoogle Scholar
  52. 52.
    Noronha K, Acharya UR, Nayak KP, Kamath S, Bhandary SV (2013) Decision support system for diabetic retinopathy using discrete wavelet transform. J Eng Med 227(3):251–261CrossRefGoogle Scholar
  53. 53.
    Noronha KP, Acharya UR, Nayak KP, Martis RJ, Bhandary SV (2014) Automated classification of glaucoma stages using higher order cumulant features. Biomed Signal Process Control 10:174–183CrossRefGoogle Scholar
  54. 54.
    Piramuthu S (2004) Evaluating feature selection methods for learning in data mining applications. Eur J Oper Res 156:483– 494CrossRefMATHGoogle Scholar
  55. 55.
    Pizer SM, Amburn EP, Austin JD, Cromarrtie R, Geselowitz A, Greer T, Romeny B, Zimmerman JB, Zuiderveld K, variations its (1987) Adaptive histogram equalization ter Haar Computer Vision. Graphics Image Process 39(3):355–368CrossRefGoogle Scholar
  56. 56.
    Reza AM (2004) Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 35:35–44CrossRefGoogle Scholar
  57. 57.
    Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P (2012) Retina, 5 th Edition, Expert Consult Premium Edition: Enhanced online features and print 3-Volume setGoogle Scholar
  58. 58.
    Sun QS, Zeng SG, Liu Y, Heng PA, Xia DS (2005) A new method of feature fusion and its application in image recognition. Pattern Recogn 38(12):2437–2448CrossRefGoogle Scholar
  59. 59.
    Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea, and retinal vasculature using a single convolutional neural network. J. Comput Sci 20:70–79.  https://doi.org/10.1016/j.jocs.2017.02.006 Google Scholar
  60. 60.
    Usher D, Dumskyj M, Himaga M, Williamson TH, Nussey S, Boyce J (2004) Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabet Med 21(1):84–90CrossRefGoogle Scholar
  61. 61.
    VISION 2020 The right to sight. https://www.iapb.org/vision-2020 https://www.iapb.org/vision-2020. (last accessed 24 May 2017)
  62. 62.
    Wang X, Wong BS, Guan TC (2005) Image enhancement for radiography inspection. In: 3rd international conference on experimental mechanics and 3rd conference of the asian committee on experimental mechanics, p 462Google Scholar
  63. 63.
    WebMD Diabetic retinopathy – topic overview. http://www.webmd.com/diabetes/tc/diabetic-retinopathy-topic-overview#1 (last accessed 11 May 2017)
  64. 64.
    Wong LY, Acharya UR, Venkatesh YV, Chee C, Lim CM, Ng EYK (2008) Identification of different stages of diabetic retinopathy using retinal optical images. Inf Sci 178:106–121CrossRefGoogle Scholar
  65. 65.
    World Health Organization (2015) Aging and health, http://www.who.int/mediacentre/factsheets/fs404/en/ (last accessed 26 May 2017)
  66. 66.
    World Health Organization (2016) Global reports on diabetes, http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf (last accessed 12 May 2017)
  67. 67.
    World Health Organization Priority eye diseases. http://www.who.int/blindness/causes/priority/en/ (last accessed 24 May 2017)
  68. 68.
    Zhang Z, Srivastava R, Liu H, Chen X, Duan L, Wong DWK, Kwoh CK, Wong TY, Liu J (2014) A survey on computer aided diagnosis for ocular diseases. BMC Med Inform Decis Mak 14:80.  https://doi.org/10.1186/1472-6947-14-80 CrossRefGoogle Scholar
  69. 69.
    Zheng Y, Hijazi MHA, Coenen F (2012) Automated disease/ no disease grading of age-related macular degeneration by an image mining approach. Investig Ophthalmol Vis Sci 53(13):8310– 8318CrossRefGoogle Scholar
  70. 70.
    (1989) National health and nutrition examination survey. Fundus photography for health technicians manualGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Joel E. W. Koh
    • 1
    • 2
  • Eddie Y. K. Ng
    • 2
  • Sulatha V. Bhandary
    • 3
  • Augustinus Laude
    • 4
  • U. Rajendra Acharya
    • 1
    • 5
    • 6
  1. 1.Department of Electronics and Computer EngineeringNgee Ann PolytechnicSingaporeSingapore
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of OphthalmologyKasturba Medical CollegeManipalIndia
  4. 4.National Healthcare Group Eye InstituteTan Tock Seng HospitalSingaporeSingapore
  5. 5.Department of Biomedical Engineering, School of Science and TechnologySUSS UniversitySingaporeSingapore
  6. 6.Department of Biomedical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations