Skip to main content
Log in

Markov-network based latent link analysis for community detection in social behavioral interactions

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

How to represent and discover social links from the perspective of implied behaviors, in particular latent links, is critical for social media analysis. In this paper, we discuss latent link analysis for community detection in social behavioral interactions. We adopt Markov network (MN) as the framework and propose the algorithm to discover latent links among social objects implied in their behavioral interactions without regard for the topological structures of social networks. First, starting from the frequent itemsets of the behavioral interactions, we propose the algorithm to construct the item-association Markov network (IAMN), which establishes the inherent relationship between frequent itemset and MN. Then, we propose the algorithm to detect communities by incorporating the concepts of k-clique and k-nearest neighbor set, as the typical application of the constructed IAMN Experimental results show the effectiveness and efficiency of the method proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Newman M (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  MathSciNet  MATH  Google Scholar 

  2. Kadushin C (2012) Understanding social networks Theories, concepts, and findings. Oxford University Press, Oxford

    Google Scholar 

  3. Lazer D, Pentland A, Adamic L et al (2009) Social science: Computational social science. Science 323 (5915):721–723

    Article  Google Scholar 

  4. Behrens T, Hunt L, Rushworth M (2009) The computation of social behavior. Science 324(5931):1160–1164

    Article  Google Scholar 

  5. Yang X, Guo Y, Liu Y (2013) Bayesian-inference Based Recommendation in Online Social Networks. IEEE Trans Parallel Distrib Syst 24(4):642–651

    Article  Google Scholar 

  6. Leskovec J, Lang K, Mahoney M (2010) Empirical comparison of algorithms for network community detection. In: Proceeding WWW, pp 631–640

  7. Yang Z, Algesheimer R, Tessone C (2016) A comparative analysis of community detection algorithms on artificial networks. Scientific Reports, 6

  8. Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E69 (026113):2

    Google Scholar 

  9. Han J, Kamber M (2000) Data Mining: Concepts and Techniques, 1st Edn. Morgan Kaufmann, California

    MATH  Google Scholar 

  10. Han J, Cheng H, Xin D et al (2007) Frequent pattern mining: current status and future directions. Data Min Knowl Disc 15(1):55–85

    Article  MathSciNet  Google Scholar 

  11. Kannan R, Vempala S, Vetta A (2004) On clusterings: good, Bad and Spectral. J ACM 51(3):497–515

    Article  MathSciNet  MATH  Google Scholar 

  12. Baralis E, Garza P (2012) I-prune: Item selection for associative classification. Int J Intell Syst 27(3):279–299

    Article  Google Scholar 

  13. Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Network of plausible inference. Morgan Kaufmann, publishers, San Mateo CA

  14. Palla G, Derenyi I, Farkas I et al (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    Article  Google Scholar 

  15. Shen H, Cheng X, Guo J (2009) Quantifying and identifying the overlapping community structure in networks. Journal of Statistical Mechanics-theory and Experiment, 07042

  16. Ostergard P (2002) A fast algorithm for the maximum clique problem. Discret Appl Math 120:197–207

    Article  MathSciNet  Google Scholar 

  17. Ibrahim N, Chen L (2015) Link prediction in dynamic social networks by integrating different types of information. Appl Intell 42(4):738–750

    Article  Google Scholar 

  18. Jiang J, Wilson C, Wang X, Sha W, Huang P, Dai Y, Zhao B (2013) Understanding latent interactions in online social networks. ACM Trans Web 7(4):39. Article 18

    Article  Google Scholar 

  19. Hernando A, Bobadilla J, Ortega F (2016) A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model. Knowl-Based Syst 97:188–202

    Article  Google Scholar 

  20. Cheng J, Bell D, Liu W (1997) Learning Bayesian Networks form Data: An Efficient Approach Based on Information Theory. In: Proc CIKM, pp 325–331

  21. Hu C, Wu X, Hu X et al (2011) Computing and pruning method for frequent pattern interestingness based on bayesian networks. J Softw (in Chinese) 22(12):2934–2950

    Article  MathSciNet  Google Scholar 

  22. Jaroszewicz S, Scheffer T (2005) Fast discovery of unexpected patterns in data, relative to a bayesian network. In: Proceedings SIGKDD, pp 118–127

  23. Vlasselaer J, Meert W, Van den Broeck G et al (2016) Exploiting local and repeated structure in Dynamic Bayesian Networks. Artif Intell 232:43–53

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu K, Wu X, Ding W et al (2011) Causal associative classification. In: Proceedings ICDM, pp 914–923

  25. Koelle D, Pfautz J, Farry M et al (2006) Applications of bayesian belief networks in social network analysis. Proc UAI workshops

  26. Yang T, Jin R, Chi Y et al (2012) A Bayesian framework for community detection integrating content and link. In: Proceedings UAI, pp 615–622

  27. Wan H, Lin Y, Wu Z et al (2012) Discovering typed communities in mobile social networks. J Comput Sci Technol 27(3):480–491

    Article  MathSciNet  Google Scholar 

  28. Yue K, Wu H, Fu X et al (2017) A Data-intensive Approach for Discovering User Similarities in Social Behavioral Interactions Based on the Bayesian Network. Neurocomputing 219:364–375

    Article  Google Scholar 

  29. Atzmueller M, Doerfel S, Mitzlaff F (2015) Description-oriented community detection using exhaustive subgroup discovery. Inf Sci 329(1):965–984

    Google Scholar 

  30. Ding J, Jiao L, Wu J et al (2016) Prediction of missing links based on community relevance and ruler inference. Knowl-Based Syst 98:200–215

    Article  Google Scholar 

  31. Fortunato S, Kamber M (2010) Community detection in graphs. Phys Rep 486(3):75–174

    Article  MathSciNet  Google Scholar 

  32. Zhao Z, Feng S, Wang Q, Huang JZ, Williams G, Fan J (2012) Topic Oriented Community Detection through Social Objects and Link Analysis in Social Networks. Knowl-Based Syst 26:164–173

    Article  Google Scholar 

  33. Li Z, He L, Li Y (2016) A novel multiobjective particle swarm optimization algorithm for signed network community detection. Appl Intell 44(3):621–633

    Article  Google Scholar 

  34. Xie J, Kelley S, Szymanski B (2011) Overlapping community detection in networks: The state-of-the-art and comparative study. ACM Comput Surv 45(4):115–123

    Google Scholar 

  35. DBLP (2015). http://www.informatik.uni-trier.de/ley/db/

  36. Danon L, Diaz-Gwilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005(9):P09008

    Article  Google Scholar 

  37. Li Z, Zhang S, Wang R, Zhang X, Chen L (2008) Quantitative function for community detection. Physical review E 77(3). https://doi.org/10.1103/PhysRevE.77.036109

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (61472345, 61462056, 61562090, 61232002), Natural Science Foundation of Yunnan Province (2014FA023, 2014FA028), Program for the second Batch of Yunling Scholar of Yunnan Province (C6153001), Program for Excellent Young Talents, Yunnan University (WX173602), and China Postdoctoral Science Foundation (2016M592721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yue, K., Wu, H. et al. Markov-network based latent link analysis for community detection in social behavioral interactions. Appl Intell 48, 2081–2096 (2018). https://doi.org/10.1007/s10489-017-1040-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1040-y

Keywords

Navigation