Abstract
Support Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel parameters and penalty parameter (C) significantly influence the classification accuracy. In this paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed algorithm (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the CALO-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, standard Ant Lion Optimization (ALO) SVM, and three well-known optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Social Emotional Optimization Algorithm (SEOA). The experimental results proved that the proposed algorithm is capable of finding the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with GA, PSO, and SEOA algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Doucet JP, Barbault F, Xia H, Panaye A, Fan B (2007) Nonlinear svm approaches to qspr/qsar studies and drug design. Curr Comput Aided Drug Des 3(4):263–289
Zhou X, Tuck DP (2007) Msvm-rfe: extensions of svm-rfe for multiclass gene selection on dna microarray data. Bioinformatics 23(9):1106–1114
Vatsa M, Singh R, Noore A (2005) Improving biometric recognition accuracy and robustness using dwt and svm watermarking. IEICE Electron Express 2(12):362–367
Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99
Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824
Zhang X, Chen X, He Z (2010) An aco-based algorithm for parameter optimization of support vector machines. Expert Syst Appl 37(9):6618–6628
Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
Yamany W, Tharwat A, Hassanin MF, Gaber T, Hassanien AE, Kim TH (2015) A new multi-layer perceptrons trainer based on ant lion optimization algorithm. In: 2015 fourth international conference on information science and industrial applications (ISI). IEEE, pp 40–45
Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing (in Press)
Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3-4):853–871
Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232
Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34
Lin Y, Lee Y, Wahba G (2002) Support vector machines for classification in nonstandard situations. Mach Learn 46(1-3):191–202
Lin Y, Wahba G, Zhang H, Lee Y (2002) Statistical properties and adaptive tuning of support vector machines. Mach Learn 48(1-3):115–136
Friedrichs F, Igel C (2005) Evolutionary tuning of multiple svm parameters. Neurocomputing 64:107–117
Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1-3):131–159
Wang L (2005) Support Vector Machines: theory and applications, vol 177. Springer Science & Business Media
Ali S, Smith K (2003) Automatic parameter selection for polynomial kernel. In: Proceedings of IEEE International conference on information reuse and integration, (IRI 2003), Lens, France, October 27-29, IEEE, 243–249
Wu CH, Tzeng GH, Lin RH (2009) A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36(3):4725–4735
Zhao M, Fu C, Ji L, Tang K, Zhou M (2011) Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes. Expert Syst Appl 38(5):5197–5204
Subasi A (2013) Classification of emg signals using pso optimized svm for diagnosis of neuromuscular disorders. Comput Biol Med 43(5):576–586
Zhang Y, Zhang P (2015) Machine training and parameter settings with social emotional optimization algorithm for support vector machine. Pattern Recogn Lett 54:36–42
Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International conference on artificial neural networks. Springer, pp 583–588
Yang J, Jin Z, Yang JY, Zhang D, Frangi AF (2004) Essence of kernel fisher discriminant: Kpca plus lda. Pattern Recogn 37(10):2097–2100
de Diego IM, Muñoz A, Moguerza JM (2010) Methods for the combination of kernel matrices within a support vector framework. Mach Learn 78(1-2):137–174
Scholköpf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press
Keerthi SS, Lin CJ (2003) Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput 15(7):1667–1689
Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G (2008) Support vector machines and kernels for computational biology. PLoS Comput Biol 4(10):e1000173
Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press
Ren B, Zhong W (2011) Multi-objective optimization using chaos based pso. Inf Technol J 10(10):1908–1916
Vohra R, Patel B (2012) An efficient chaos-based optimization algorithm approach for cryptography. Commun Netw Secur 1(4):75–79
Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PloS ONE 11(3):e0150652
Blake C, Merz CJ (1998) {UCI} repository of machine learning databases
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Huang CL, Wang CJ (2006) A ga-based feature selection and parameters optimizationfor support vector machines. Expert Syst Appl 31(2):231–240
Yang XS (2014) Nature-inspired optimization algorithms, 1st edn. Elsevier
He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Rights and permissions
About this article
Cite this article
Tharwat, A., Hassanien, A.E. Chaotic antlion algorithm for parameter optimization of support vector machine. Appl Intell 48, 670–686 (2018). https://doi.org/10.1007/s10489-017-0994-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-017-0994-0