Skip to main content

Advertisement

Log in

Chaotic antlion algorithm for parameter optimization of support vector machine

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Support Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel parameters and penalty parameter (C) significantly influence the classification accuracy. In this paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed algorithm (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the CALO-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, standard Ant Lion Optimization (ALO) SVM, and three well-known optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Social Emotional Optimization Algorithm (SEOA). The experimental results proved that the proposed algorithm is capable of finding the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with GA, PSO, and SEOA algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Doucet JP, Barbault F, Xia H, Panaye A, Fan B (2007) Nonlinear svm approaches to qspr/qsar studies and drug design. Curr Comput Aided Drug Des 3(4):263–289

    Article  Google Scholar 

  2. Zhou X, Tuck DP (2007) Msvm-rfe: extensions of svm-rfe for multiclass gene selection on dna microarray data. Bioinformatics 23(9):1106–1114

    Article  Google Scholar 

  3. Vatsa M, Singh R, Noore A (2005) Improving biometric recognition accuracy and robustness using dwt and svm watermarking. IEICE Electron Express 2(12):362–367

    Article  Google Scholar 

  4. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  5. Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824

    Article  Google Scholar 

  6. Zhang X, Chen X, He Z (2010) An aco-based algorithm for parameter optimization of support vector machines. Expert Syst Appl 37(9):6618–6628

    Article  Google Scholar 

  7. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  8. Yamany W, Tharwat A, Hassanin MF, Gaber T, Hassanien AE, Kim TH (2015) A new multi-layer perceptrons trainer based on ant lion optimization algorithm. In: 2015 fourth international conference on information science and industrial applications (ISI). IEEE, pp 40–45

  9. Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing (in Press)

  10. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3-4):853–871

    Article  Google Scholar 

  11. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  12. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  13. Lin Y, Lee Y, Wahba G (2002) Support vector machines for classification in nonstandard situations. Mach Learn 46(1-3):191–202

    Article  MATH  Google Scholar 

  14. Lin Y, Wahba G, Zhang H, Lee Y (2002) Statistical properties and adaptive tuning of support vector machines. Mach Learn 48(1-3):115–136

    Article  MATH  Google Scholar 

  15. Friedrichs F, Igel C (2005) Evolutionary tuning of multiple svm parameters. Neurocomputing 64:107–117

    Article  Google Scholar 

  16. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1-3):131–159

    Article  MATH  Google Scholar 

  17. Wang L (2005) Support Vector Machines: theory and applications, vol 177. Springer Science & Business Media

  18. Ali S, Smith K (2003) Automatic parameter selection for polynomial kernel. In: Proceedings of IEEE International conference on information reuse and integration, (IRI 2003), Lens, France, October 27-29, IEEE, 243–249

    Google Scholar 

  19. Wu CH, Tzeng GH, Lin RH (2009) A novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst Appl 36(3):4725–4735

    Article  Google Scholar 

  20. Zhao M, Fu C, Ji L, Tang K, Zhou M (2011) Feature selection and parameter optimization for support vector machines: a new approach based on genetic algorithm with feature chromosomes. Expert Syst Appl 38(5):5197–5204

    Article  Google Scholar 

  21. Subasi A (2013) Classification of emg signals using pso optimized svm for diagnosis of neuromuscular disorders. Comput Biol Med 43(5):576–586

    Article  MathSciNet  Google Scholar 

  22. Zhang Y, Zhang P (2015) Machine training and parameter settings with social emotional optimization algorithm for support vector machine. Pattern Recogn Lett 54:36–42

    Article  Google Scholar 

  23. Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: International conference on artificial neural networks. Springer, pp 583–588

    Google Scholar 

  24. Yang J, Jin Z, Yang JY, Zhang D, Frangi AF (2004) Essence of kernel fisher discriminant: Kpca plus lda. Pattern Recogn 37(10):2097–2100

    Article  Google Scholar 

  25. de Diego IM, Muñoz A, Moguerza JM (2010) Methods for the combination of kernel matrices within a support vector framework. Mach Learn 78(1-2):137–174

    Article  MathSciNet  Google Scholar 

  26. Scholköpf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press

  27. Keerthi SS, Lin CJ (2003) Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput 15(7):1667–1689

    Article  MATH  Google Scholar 

  28. Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G (2008) Support vector machines and kernels for computational biology. PLoS Comput Biol 4(10):e1000173

    Article  Google Scholar 

  29. Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press

  30. Ren B, Zhong W (2011) Multi-objective optimization using chaos based pso. Inf Technol J 10(10):1908–1916

    Article  Google Scholar 

  31. Vohra R, Patel B (2012) An efficient chaos-based optimization algorithm approach for cryptography. Commun Netw Secur 1(4):75–79

    Google Scholar 

  32. Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PloS ONE 11(3):e0150652

    Article  Google Scholar 

  33. Blake C, Merz CJ (1998) {UCI} repository of machine learning databases

  34. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  35. Huang CL, Wang CJ (2006) A ga-based feature selection and parameters optimizationfor support vector machines. Expert Syst Appl 31(2):231–240

    Article  Google Scholar 

  36. Yang XS (2014) Nature-inspired optimization algorithms, 1st edn. Elsevier

  37. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Tharwat.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharwat, A., Hassanien, A.E. Chaotic antlion algorithm for parameter optimization of support vector machine. Appl Intell 48, 670–686 (2018). https://doi.org/10.1007/s10489-017-0994-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0994-0

Keywords

Navigation