Applied Intelligence

, Volume 47, Issue 4, pp 1132–1143 | Cite as

Multi-resolution gray-level image enhancement using particle swarm optimization

  • Ali Mohammad Nickfarjam
  • Hossein Ebrahimpour-Komleh
Article
  • 289 Downloads

Abstract

This paper presents a multi-resolution method for gray-level image enhancement using Particle Swarm Optimization (PSO). The enhancement optimization procedure is a non-linear problem with various constraints. The proposed image enhancement algorithm (MGE-PSO) generates a whole pyramid of differently sized image in order to utilize more information for improvement process. In fact, MGE-PSO employs the ability of image pyramid to determine informative parts of an image for visual perception. When an image is downscaled, area of homogeneous regions is decreased and informative pixels of input image can be selected easier. The PSO uses averaged variance value of all pixels included in the informative and non-informative classes of each level in image pyramid to move through search space for finding the best intensity values of pixels to transfer maximum visual perception. Experimental results on Berkeley dataset demonstrate the superiority of the proposed MGE-PSO to other methods. Beside, detailed analysis of selection criterion used in PSO are available.

Keywords

Image improvement Multi-resolution image enhancement Gray-level images Image pyramid Particle swarm optimization 

References

  1. 1.
    Panetta KA, Wharton EJ, Agaian SS (2008) Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans Syst Man Cybern B Cybern 38(1):174–188Google Scholar
  2. 2.
    Aggarwal A, Garg A (2014) Medical image enhancement using adaptive multiscale product thresholding International IEEE conference on issues and challenges in intelligent computing techniquesGoogle Scholar
  3. 3.
    Richards J (2013) Remote sensing digital image analysis: an introduction. SpringerGoogle Scholar
  4. 4.
    Srilekha G, Kumar VK, Jyothi B (2013) Satellite image resolution enhancement using DWT and contrast enhancement using SVD International journal of engineering research and technology (IJERT) 2(5)Google Scholar
  5. 5.
    Gonzalez RC, Woods RE (2002) Digital image processing. Prentice HallGoogle Scholar
  6. 6.
    Pratt WK (2001) Digital image processing. A Wiley-Interscience PublicationGoogle Scholar
  7. 7.
    Szeliski R (2010) Computer vision: algorithms and applications. Springer, Text is Computer ScienceGoogle Scholar
  8. 8.
    Gibson JJ (2014) The ecological approach to visual perception: classic edition. Psychology PressGoogle Scholar
  9. 9.
    Kim Y-T (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1): 1–8Google Scholar
  10. 10.
    Chen S-D, Ramli AR (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301– 1309Google Scholar
  11. 11.
    Shanmugavadivu P, Balasubramanian K (2014) Particle swarm optimized multi-objective histogram equalization for image enhancement. Opt Laser Technol 57:243–251Google Scholar
  12. 12.
    Zhang C-J, Hu M (2008) Contrast enhancement for image by WNN and GA combining PSNR with information entropy. Fuzzy Optim Decis Making 7(4):331–349Google Scholar
  13. 13.
    Ce L, Yannan Z, Chengsu O (2013) A novel method of image enhancement via multi-scale fuzzy membership. Springer Proceedings of Chinese Intelligent Automation ConferenceGoogle Scholar
  14. 14.
    Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J (2010) Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 56(4)Google Scholar
  15. 15.
    Saenko A, Polte G, Musalimov V (2012) Image enhancement and image quality analysis using fuzzy logic techniques International IEEE conference on communications (COMM)Google Scholar
  16. 16.
    Mehmet Emin Y, Alper B (2013) Improved digital image enhancement filters based on type-2 neuro-fuzzy techniques. Springer Computational Intelligence in Image ProcessingGoogle Scholar
  17. 17.
    Bhutada GG, Anand RS, Saxena SC (2011) Image enhancement by wavelet-based thresholding neural network with adaptive learning rate. IET Image Proc 5(7):573–582Google Scholar
  18. 18.
    Yinghua L, Tian P, Jian C (2010) A biologically inspired neural network for image enhancement International IEEE symposium on intelligent signal processing and communication systems (ISPACS)Google Scholar
  19. 19.
    Draa A, Bouaziz A (2014) An artificial bee colony algorithm for image contrast enhancement. Swarm Evol Comput 16:69–84Google Scholar
  20. 20.
    Hashemi S, Kiani S, Noroozi N, Ebrahimi Moghaddam M (2010) An image contrast enhancement method based on genetic algorithm. Pattern Recogn Lett 31(13):1816–1824Google Scholar
  21. 21.
    Agrawal S, Panda R (2012) An efficient algorithm for gray-level image enhancement using cuckoo search. In International Conference on Swarm, Evolutionary, and Memetic Computing, pp. 82–89. Springer Berlin HeidelbergGoogle Scholar
  22. 22.
    Kwok NM, Ha QP, Liu D, Fang G (2009) Contrast enhancement and intensity preservation for gray-level images using multi-objective particle swarm optimization. IEEE Trans Autom Sci Eng 6(1):145–155Google Scholar
  23. 23.
    Yaghoobi S, Hemayat S, Mojallali H (2015) Image gray-level enhancement using black hole algorithm 2nd international IEEE conference on pattern recognition and image analysis (IPRIA)Google Scholar
  24. 24.
    Yuan Kueh H, Marco E, Springer M, Sivaramakrishnan S (2014) Image analysis for biology. Marine Biological Laboratory, MBL Physiology CourseGoogle Scholar
  25. 25.
    Costa NRP (2010) Simultaneous optimization of mean and standard deviation. Qual Eng 22(3):140–149Google Scholar
  26. 26.
    Munteanu C, Rosa A (2004) Gray-scale image enhancement as an automatic process driven by evolution. IEEE Trans. Syst. Man Cybern. B Cybern. 34(2):1292–1298CrossRefGoogle Scholar
  27. 27.
    Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM (1984) Pyramid methods in image processing. RCA Technical ReportGoogle Scholar
  28. 28.
    Strengert M, Kraus M, Ertl T (2006) Pyramid methods in GPU-based image processing. Proceedings vision, modeling, and visualizationGoogle Scholar
  29. 29.
    Nixon MS, Aguado AS (2002) Feature extraction and image processing. Academic PressGoogle Scholar
  30. 30.
    Gao W, Yang L, Zhang X, Liu H (2010) An improved sobel edge detection 3 rd international IEEE conference on computer science and information technology (ICCSIT)Google Scholar
  31. 31.
    Eberhart R, Kennedy J (1995) Particle swarm optimization International IEEE conference on neural networksGoogle Scholar
  32. 32.
    Omran MGH (2004) Particle swarm optimization methods for pattern recognition and image processing. Thesis, University of PretoriaGoogle Scholar
  33. 33.
    Aydin TO, Čadík M, Myszkowski K, Seidel HP (2010) Visually significant edges. ACM Transactions on Applied Perception (TAP) 7(4):27Google Scholar
  34. 34.
    Fedias M, Saigaa D (2010) A new approach based in mean and standard deviation for authentication system of face. Praise Worthy Prize, International Review on Computers and SoftwareGoogle Scholar
  35. 35.
    Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75CrossRefGoogle Scholar
  36. 36.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ali Mohammad Nickfarjam
    • 1
  • Hossein Ebrahimpour-Komleh
    • 1
  1. 1.Faculty of Electrical and Computer Engineering, Computer Engineering DepartmentUniversity of KashanKashanIran

Personalised recommendations