Skip to main content
Log in

Multi-search differential evolution algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The differential evolution algorithm (DE) has been shown to be a very simple and effective evolutionary algorithm. Recently, DE has been successfully used for the numerical optimization. In this paper, first, based on the fitness value of each individual, the population is partitioned into three subpopulations with different size. Then, a dynamically adjusting method is used to change the three subpopulation group sizes based on the previous successful rate of different mutation strategies. Second, inspired by the “DE/current to pbest/1”, three mutation strategies including “DE/current to cbest/1”, “DE/current to rbest/1” and “DE/current to fbest/1” are proposed to take on the responsibility for either exploitation or exploration. Finally, a novel effective parameter adaptation method is designed to automatically tune the parameter F and CR in DE algorithm. In order to validate the effectiveness of MSDE, it is tested on ten benchmark functions chosen from literature. Compared with some evolution algorithms from literature, MSDE performs better in most of the benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Suman B (2004) Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Comput Chem Eng 8:1849–1871

    Article  Google Scholar 

  2. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. Evol Comput 1:82–87

    Google Scholar 

  3. Zhang Q, Muhlenbein H (2004) On the convergence of a class of estimation of distribution algorithms. IEEE Trans Evol Comput 8(2):127–136

    Article  Google Scholar 

  4. Clerc M, Kennedy J (2002) The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans Evol Comput 6:58–73

    Article  Google Scholar 

  5. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  6. Simon D (2008) Biogeography-Based Optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  7. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous space. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: World congress on nature & biologically inspired computing (NaBIC 2009). IEEE publication, USA, pp 210–214

  9. Yang XS (2010) Firefly algorithm, Levy flights and global optimization. In: Research and Development in Intelligent Systems XXVI, pp 209–218

  10. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithmA novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  11. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput & Applic 24(7-8):1867–1877

    Article  Google Scholar 

  12. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geol 46:229–247

    Article  Google Scholar 

  13. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    MathSciNet  MATH  Google Scholar 

  14. Das S, Suganthan PN (2011) Differential evolution: A survey of the state-of-the-art. IEEE Trans Evol Comput 15:4–31

    Article  Google Scholar 

  15. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self adapting control parameters in differential evolution: A comparativestudy on numerical benchmark problems. IEEE Trans Evolut Comput 10(6):646–657

    Article  Google Scholar 

  16. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12:64–79

    Article  Google Scholar 

  17. Liu J, Lampinen J (2005) 2005, A fuzzy adaptive differential evolution algorithm. Soft Computing: Fusion Found,. Methodologies Applicat.. 9:448–462

    Article  MATH  Google Scholar 

  18. Qin A, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13:398–417

    Article  Google Scholar 

  19. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13:945–958

    Article  Google Scholar 

  20. Ghosh A, Das S, Chowdhury A, Giri R (2011) An improved differential evolution algorithm with fitness-based adaptation of the control parameters. Inf Sci 181:3749–65

    Article  MathSciNet  Google Scholar 

  21. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood based mutation operator. IEEE Trans Evol Comput 13(3):526–53

    Article  Google Scholar 

  22. Wang Y, Cai ZX, Zhang QF (2011) Differential Evolution with Composite Trail Vector Generation Strategies and Control Parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  23. Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216(1):33–46

    Article  MathSciNet  MATH  Google Scholar 

  24. Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern B Cybern 42(2):482–500

    Article  Google Scholar 

  25. Wang Y, Cai Z, Zhang Q (2012) Enhancing the search ability of differential evolution through orthogonal crossover. Inf Sci 185(1):153–177

    Article  MathSciNet  Google Scholar 

  26. Cai Y, Wang J, Yin J (2012) Learning-enhanced differential evolution for numerical optimization. Soft Comput 16(2):303–330

    Article  Google Scholar 

  27. Sharma H, Bansal JC, Arya KV (2012) Fitness based differential evolution. Memetic Computing 4(4):303–316

    Article  Google Scholar 

  28. de Melo VV, Delbem ACB (2012) Investigating smart sampling as a population initialization method for differential evolution in continuous problems. Inf Sci 193:36–53

    Article  Google Scholar 

  29. Ali M, Pant M, Abraham A (2012) Improving differential evolution algorithm by synergizing different improvement mechanisms. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 7(2):20

    Google Scholar 

  30. Elsayed SM, Sarker RA, Ray T (2012) Parameters adaptation in differential evolution. In: IEEE Congress on Evolutionary Computation, pp 1–8

  31. Gong W, Cai Z (2013) Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics 43(6):2066–2081

    Article  Google Scholar 

  32. Wang H, Rahnamayan S, Sun H, Omran MG (2013) Gaussian bare-bones differential evolution. IEEE Transactions on Cybernetics 43(2):634–647

    Article  Google Scholar 

  33. Elsayed SM, Sarker RA, Essam DL (2013) An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Trans Ind Inf 9(1):89–99

    Article  Google Scholar 

  34. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: IEEE Congress on Evolutionary Computation, pp 71–78

  35. Guo SM, Yang CC (2015) Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Trans Evol Comput 19(1):31–49

    Article  MathSciNet  Google Scholar 

  36. Tang L, Dong Y, Liu J (2015) Differential evolution with an individual-dependent mechanism. IEEE Trans Evol Comput 19(4):560–574

    Article  Google Scholar 

  37. Yang M, Li C, Cai Z, Guan J (2015) Differential evolution with auto-enhanced population diversity. IEEE Transactions on Cybernetics 45(2):302–315

    Article  Google Scholar 

  38. Li YL, Zhan ZH, Gong YJ, Chen WN, Zhang J, Li Y (2015) Differential evolution with an evolution path: A DEEP evolutionary algorithm. IEEE Transactions on Cybernetics 45(9):1798–1810

    Article  Google Scholar 

  39. Poikolainen I, Neri F, Caraffini F (2015) Cluster-Based Population Initialization for differential evolution frameworks. Inf Sci 297:216–235

    Article  Google Scholar 

  40. Aalto J, Lampinen J (2015) December. A Population Adaptation Mechanism for Differential Evolution Algorithm. In: 2015 IEEE Symposium Series on Computational Intelligence, pp 1514–1521

  41. Gao WF, Yen GG, Liu SY (2015) A dual-population differential evolution with coevolution for constrained optimization. IEEE Transactions on Cybernetics 45(5):1108–1121

    Google Scholar 

  42. Cai Y, Wang J (2015) Differential evolution with hybrid linkage crossover. Inf Sci 320:244–287

    Article  MathSciNet  Google Scholar 

  43. Branke J, Kaußler T, Smidt C, Schmeck H (2015) A multi-population approach to dynamic optimization problems, pp 299–307

  44. Blackwell T, Branke J (2004) Multi-swarm optimization in dynamic environments. In: Workshops on Applications of Evolutionary Computation, pp 489–500

  45. Niu B, Zhu Y, He X (2005) September. Multi-population cooperative particle swarm optimization. In: European Conference on Artificial Life, pp 874–883

  46. Goncalves JF, Resende MG (2012) A parallel multi-population biased random-key genetic algorithm for a container loading problem. Comput Oper Res 39(2):179–190

    Article  MathSciNet  MATH  Google Scholar 

  47. Tasgetiren MF, Suganthan PN (2006) A multi-populated differential evolution algorithm for solving constrained optimization problem. In: 2006 IEEE International Conference on Evolutionary Computation, pp 33–40

  48. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search, vol 1, pp 522–528

  49. Park T, Ryu KR (2010) A dual-population genetic algorithm for adaptive diversity control. IEEE Trans Evol Comput 14(6):865–884

    Article  Google Scholar 

  50. Guo YN, Cheng J, Cao YY, Lin Y (2011) A novel multi-population cultural algorithm adopting knowledge migration. Soft Comput 15(5):897–905

    Article  Google Scholar 

  51. Ali MZ, Awad NH, Suganthan PN (2015) Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization. Appl Soft Comput 33:304–327

    Article  Google Scholar 

  52. Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci 329:329–345

    Article  Google Scholar 

  53. Yu WJ, Zhang J (2011) Multi-population differential evolution with adaptive parameter control for global optimization. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp 1093–1098

  54. Ozsoydan FB, Baykasoglu A (2015) December. A multi-population firefly algorithm for dynamic optimization problems. In: 2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp 1–7

  55. Di Carlo M, Vasile M, Minisci E (2015) Multi-population inflationary differential evolution algorithm with Adaptive Local Restart. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp 632–639

  56. Zhang Z (2015) A new multi–population–based differential evolution. Int J Comput Sci Math 6(1):88–96

    Article  MathSciNet  Google Scholar 

  57. Nseef SK, Abdullah S, Turky A, Kendall G (2016) An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems. Knowl-Based Syst 104:14–23

    Article  Google Scholar 

  58. Li C, Nguyen TT, Yang M, Yang S, Zeng S (2015) Multi-population methods in unconstrained continuous dynamic environments: The challenges. Inf Sci 296:95–118

    Article  Google Scholar 

  59. Halim Z, Waqas M, Hussain SF (2015) Clustering large probabilistic graphs using multi-population evolutionary algorithm. Inf Sci 317:78–95

    Article  Google Scholar 

  60. Tang K, Li Z, Luo L, Liu B (2015) Multi-strategy adaptive particle swarm optimization for numerical optimization. Eng Appl Artif Intell 37:9–19

    Article  Google Scholar 

  61. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  62. Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2011) Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Trans Evol Comput 15(1):99–119

    Article  Google Scholar 

  63. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  64. Hansen N, Ostermeier A (2001) Completely derandomized self adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  65. Garcia-Martinez C, Lozano M, Herrera F, Molina D, Sanchez AM (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res 185:1088–1113

    Article  MATH  Google Scholar 

  66. Cheung NJ, Ding XM, Shen HB (2016) A Nonhomogeneous Cuckoo Search Algorithm Based on Quantum Mechanism for Real Parameter Optimization

  67. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183

    Article  Google Scholar 

  68. Clerc M (2012) Standard particle swarm optimisation

  69. El-Abd M (2012) Generalized opposition-based artificial bee colony algorithm. In: 2012 IEEE Congress on Evolutionary Computation. IEEE, pp 1–4

  70. Xiang Y, Peng Y, Zhong Y, Chen Z, Lu X, Zhong X (2014) A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Comput Optim Appl 57(2):493–516

    Article  MathSciNet  MATH  Google Scholar 

  71. Omidvar MN, Li X, Mei Y, Yao X (2014) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378–393

    Article  Google Scholar 

  72. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178(15):2985–2999

    Article  MathSciNet  MATH  Google Scholar 

  73. Lee JW, Choi T, Do H, Park D, Park C, Son YS (2015) May. Experimental results of heterogeneous cooperative Bare Bones Particle Swarm Optimization with Gaussian jump for large scale global optimization. In: IEEE Congress on Evolutionary Computation (CEC), vol 2015, pp 1979–1985

  74. LaTorre A, Muelas S, Pen̋a JM (2013) Large scale global optimization: experimental results with MOS-based hybrid algorithms. In: 2013 IEEE Congress on Evolutionary Computation, pp 2742–2749

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their time. This research is supported by the National Natural Science Foundation of China under Grant No. 61603087, and also funded by the Natural Science Foundation of Jilin Province under Grant No. 20160101253JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangtao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, S. & Hu, J. Multi-search differential evolution algorithm. Appl Intell 47, 231–256 (2017). https://doi.org/10.1007/s10489-016-0885-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0885-9

Keywords

Navigation