Skip to main content
Log in

The sparse Luce model

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The Luce model is one of the most popular ranking models used to estimate the ranks of items. In this study, we focus on grouping items with similar abilities and consider a new supervised clustering method by fusing specific parameters used in the Luce model. By modifying the penalty function conventionally used in grouping parameters, we obtain a new method of grouping items in the Luce model without pairwise comparison modeling and develop an efficient algorithm to estimate the parameters. Moreover, we give an application of the proposed algorithm to the Bradley-Terry model with ties. In the real data analysis, we confirm that the proposed estimator provides an easier interpretation of ranks and an improvement in the quality of prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agresti A (2012) Categorical data analysis, 3rd edn. Springer, New York

    MATH  Google Scholar 

  2. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trend® Mach Learn 3:1–122

  3. Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39:324–345

    MathSciNet  MATH  Google Scholar 

  4. Burges C, Shaked T, Renshaw E, Lazier A, Deeds M, Hamilton N, Hullender G (2005) Learning to rank using gradient descent. Proceed 22nd Int Conf Mach Learn 56:89–96

    Google Scholar 

  5. Cao Z, Qin T, Liu T-Y, Tsai M-F, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, pp 129–136

  6. Davidson RR (1970) On extending the Bradley-Terry model to accommodate ties in paired comparison experiments. J Am Stat Assoc 65:317–328

    Article  Google Scholar 

  7. Freund Y, Iyer R, Schapire R, Singer Y (2003) An efficient boosting algorithm for combining preferences. J Mach Learn Res 4:933–969

    MathSciNet  MATH  Google Scholar 

  8. Gertheiss J, Tutz G (2010) Sparse modeling of categorial explanatory variables. Ann Appl Stat 4:2150–2180

    Article  MathSciNet  MATH  Google Scholar 

  9. Hunter DR, Lange K (2004) A tutorial on MM algorithms. Am Stat 58:30–37

    Article  MathSciNet  Google Scholar 

  10. Hunter DR (2004) MM algorithms for generalized Bradley-Terry models. Ann Stat 32:384–406

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeon J, Kim Y (2013) Revisiting the Bradley-Terry model and its application to information retrieval. J Korean Data Inf Sci Soc 24:1089–1099

    Google Scholar 

  12. Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceedings of the eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 133–142

  13. Ke T, Fan J, Wu Y (2015) Homogeneity pursuit. J Am Stat Assoc 110:175–194

    Article  MathSciNet  MATH  Google Scholar 

  14. Kendall M (1938) A new measure of rank correlation. Biometrika 30:81–93

    Article  MATH  Google Scholar 

  15. Luce RD (1959) Individual choice behavior: A theoretical analysis. Wiley, New York

    MATH  Google Scholar 

  16. Masarotto G, Varin C (2012) The ranking lasso and its application to sport tournaments. Ann Appl Stat 6:1949–1970

    Article  MathSciNet  MATH  Google Scholar 

  17. McFadden D (1973) Conditional logit analysis of qualitative choice behavior. In: Frontiers in Econometrics. Academic Press, New York, pp 105–142

  18. Mosteller F (1951) Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations. Psychometrika 16:3–9

    Article  Google Scholar 

  19. Rao PV, Kupper LL (1967) Ties in paired-comparison experiments: a generalization of the Bradley-Terry model. J Am Stat Assoc 62:194–204

    Article  MathSciNet  Google Scholar 

  20. Schauberger G, Tutz G (2015) Modelling heterogeneity in paired comparison data - an l1 penalty approach with an application to party preference data. urn:nbn:de:bvb:19-epub-25175-7. Technical report

  21. Shen X, Huang H -C (2010) Grouping pursuit through a regularization solution surface. J Am Stat Assoc 105:727–739

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen X, Huang H -C, Pan W (2012) Simultaneous supervised clustering and feature selection over a graph. Biometrika 99:899–914

    Article  MathSciNet  MATH  Google Scholar 

  23. Thurstone L (1927) A law of comparative judgment. Psychol Rev 34:273–286

    Article  Google Scholar 

  24. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J Royal Stat Soc Ser B 67:91–108

    Article  MathSciNet  MATH  Google Scholar 

  25. Tibshirani R, Taylor J (2011) The solution path of the generalized lasso. Ann Stat 39:1335–1371

    Article  MathSciNet  MATH  Google Scholar 

  26. Tutz G (1986) Bradley-Terry-Luce models with an ordered response. J Math Psychol 30:306–316

    Article  MathSciNet  MATH  Google Scholar 

  27. Tutz G, Schauberger G (2015) Extended ordered paired comparison models with application to football data from German Bundesliga. AStA Adv Stat Anal 99:209–227

    Article  MathSciNet  Google Scholar 

  28. Varin C, Cattelan M, Firth D (2015) Statistical modelling of citation exchange between statistics journals. J Royal Stat Soc Ser A 179:1–33

    MathSciNet  Google Scholar 

  29. Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15:915–936

    Article  MATH  Google Scholar 

  30. Zhou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Kyonggi University Research Grant 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosik Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, JJ., Choi, H. The sparse Luce model. Appl Intell 48, 1953–1964 (2018). https://doi.org/10.1007/s10489-016-0861-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0861-4

Keywords

Navigation