Skip to main content
Log in

Multi-category laplacian least squares twin support vector machine

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we have formulated a Laplacian Least Squares Twin Support Vector Machine called Lap-LST-KSVC for semi-supervised multi-category k-class classification problem. Similar to Least Squares Twin Support Vector Machine for multi-classification(LST-KSVC), Lap-LST-KSVC, evaluates all the training samples into “1-versus-1-versus-rest” classification paradigm, so as to generate ternary output {−1, 0, +1}. Experimental results prove the efficacy of the proposed method over other inline Laplacian Twin Support Vector Machine(Lap-TWSVM) in terms of classification accuracy and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Melacci S, Belkin M (2011) Laplacian support vector machines trained in the primal. J Mach Learn Res 12:1149–1184

    MathSciNet  MATH  Google Scholar 

  2. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Inproceedings of the eleventh annual conference on Computational learning theory, pp 92–100

  3. Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using em. Mach Learn 39(2-3):103–134

    Article  MATH  Google Scholar 

  4. Zhu X (2005) Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison

  5. Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Transactions Pattern Analysis and Machine Intelligence 29(5):905– 910

    Article  MATH  Google Scholar 

  6. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543

    Article  Google Scholar 

  7. Zhang Z, Zhen L, Deng N, Tan J (2014) Sparse least square twin support vector machine with adaptive norm. Appl Intell 41:10971107

    Google Scholar 

  8. Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53

    Article  MATH  Google Scholar 

  9. Chen WJ, Shao YH, Deng NY, Feng ZL (2014) Laplacian least squares twin support vector machine for semi-supervised classification. Neurocomputing 145:465–476

    Article  Google Scholar 

  10. Xu Y, Guo R, Wang L (2013) A twin multi-class classification support vector machine. Cognitive Computation 5(4):580–588

    Article  Google Scholar 

  11. Angulo C, Parra X, Catala A (2003) K-SVCR: a support vector machine for multi-class classification. Neurocomputing 55(1):57–77

    Article  Google Scholar 

  12. Nasiri JA, Charkari NM, Jalili S (2015) Least squares twin multi-class classification support vector machine. Pattern Recogn 48(3):984–992

    Article  Google Scholar 

  13. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  14. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  MATH  Google Scholar 

  15. Mangasarian OL, Wild EW (2001) Proximal support vector machine classifiers. In: proceedings KDD-2001: Knowledge Discovery and Data Mining. Citeseer

  16. Chen X, Yang J, Ye Q, Liang J (2011) Recursive projection twin support vector machine via within-class variance minimization. Pattern Recogn 44(10):2643–2655

    Article  MATH  Google Scholar 

  17. Golub GH, Loan CFV (2012) Matrix computations, vol 3. JHU Press

  18. Asuncion A, Newman D (2007) UCI machine learning repository

  19. Duda RO, Hart PE, Stork DG (2001) Pattern classification. 2nd Edn New York

  20. Wang JZ, Li J, Wiederhold G (2001) Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions Pattern Analysis and Machine Intelligence 23(9):947– 963

    Article  Google Scholar 

  21. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  22. Pickard R, Graszyk C, Mann S, Wachman J, Pickard l, Campbell L (1995) Vistex database. Media Lab MIT, Cambridge

    Google Scholar 

  23. Liu GH, Zhang L, Hou YK, Li ZY, Yang JY (2010) Image retrieval based on multi-texton histogram. Pattern Recogn 43(7):2380–2389

    Article  MATH  Google Scholar 

  24. Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106 :68–76

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to Prof. Suresh Chandra for his encouragement during the preparation of our manuscript. The authors would also like to thank the editor and the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshma Khemchandani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemchandani, R., Pal, A. Multi-category laplacian least squares twin support vector machine. Appl Intell 45, 458–474 (2016). https://doi.org/10.1007/s10489-016-0770-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0770-6

Keywords

Navigation