Skip to main content
Log in

Multi-objective approach for robot motion planning in search tasks

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This work addresses the problem of single robot coverage and exploration in an environment with the goal of finding a specific object previously known to the robot. As limited time is a constraint of interest we cannot search from an infinite number of points. Thus, we propose a multi-objective approach for such search tasks in which we first search for a good set of positions to place the robot sensors in order to acquire information from the environment and to locate the desired object. Given the interesting properties of the Generalized Voronoi Diagram, we restrict the candidate search points along this roadmap. We redefine the problem of finding these search points as a multi-objective optimization one. NSGA-II is used as the search engine and ELECTRE I is applied as a decision making tool to decide among the trade-off alternatives. We also solve a Chinese Postman Problem to optimize the path followed by the robot in order to visit the computed search points. Simulation results show a comparison between the solution found by our method and solutions defined by other known approaches. Finally, a real robot experiment indicates the applicability of our method in practical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Our solutions were found using MATLAB on a Core i7 machine with 4 GB RAM.

  2. http://www.mobilerobots.com/ResearchRobots/P3AT.aspx

References

  1. Davoodi M, Panahi F, Mohades A, Hashemi SN (2013) Multi-objective path planning in discrete space. J Appl Soft Comput 13(1):709–720

    Article  Google Scholar 

  2. Davoodi M, Panahi F, Mohades A, Hashemi SN (2015) Clear and smooth path planning. J Appl Soft Comput 32:568–579

    Article  Google Scholar 

  3. Wanga X, Shia Y, Dingb D, Gua X (2015) Double global optimum genetic algorithm particle swarm optimization based welding robot path planning. Journal of Engineering Optimization, pp 1–18

  4. Zhang Y, Gong DW, Zhang JH (2012) Robot path planning in uncertain environment using multi-objective particle swarm optimization. J Neurocomput 103:172–185

    Article  Google Scholar 

  5. Ortiza JAH, Rodríguez-Vázqueza K, Castañedab MAP, Cosíoa FA (2013) Autonomous robot navigation based on the evolutionary multi-objective optimization of potential fields. J Eng Optim 45(1):19–43

    Article  MathSciNet  Google Scholar 

  6. Ioannidisa K, Sirakoulisa GC, Andreadis I (2011) A path planning method based on cellular automata for cooperative robots. Int J Appl Artif Intell 25(8):721–745

    Article  Google Scholar 

  7. Montiel O, Orozco-Rosas U, Sepúlveda R (2015) Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles. J Expert Syst Appl 42(12): 5177–5191

    Article  Google Scholar 

  8. Kala R (2012) Multi-robot path planning using co-evolutionary genetic programming. J Expert Syst Appl 39 (3): 3817–3831

    Article  Google Scholar 

  9. Dasgupta B, Hespanha JP, Sontag E (2004) Aggregation-based approaches to honey-pot searching with local sensory information. In: Proceeding of American Control Conference (ACC), pp 1202–1207

  10. Grady DK, Moll M, Hegde C, Sankaranarayanan AC, Baraniuk RG, Kavraki LE (2012) Multi-objective sensor-based replanning for a car-like robot. In: Proceeding of IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp 1–6

  11. Amanatiadis AA, Chatzichristofis SA, Charalampous K, Doitsidis L, Kosmatopoulos EB, Tsalides P, Gasteratos A, Roumeliotis SI (2013) A multi-objective exploration strategy for mobile robots under operational constraints. IEEE Access 1:691–702

    Article  Google Scholar 

  12. Serpen G, Dou C (2015) Automated robotic parking systems: real-time, concurrent and multi-robot path planning in dynamic environments. Springer J Appl Intell 42:231–251

    Article  Google Scholar 

  13. Amigoni F (2008) Experimental evaluation of some exploration strategies for mobile robots. In: Proceeding of the IEEE International Conference on Robotics and Automation (ICRA) , pp 2818–2823

  14. Almansa-Valverde S, Castillo JC, Fernández-Caballero A (2012) Mobile robot map building from time-of-flight camera. J Expert Syst Appl 39(10):8835–8843

    Article  Google Scholar 

  15. Latombe JC, Gonzales-Ba-nos HH (2002) Navigation strategies for exploring indoor environments. Int J Robot Res 21: 829–848

    Article  Google Scholar 

  16. Amigoni F, Gallo A (2005) A multi-objective exploration strategy for mobile robots. In: Proceeding of IEEE International Conference on Robotics and Automation (ICRA), pp 3850–3855

  17. Kang JG, Kim S, An SY, Oh SY (2012) A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Springer J Appl Intell 36(1):242–269

    Article  Google Scholar 

  18. Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: Proceeding of Intelligence in Robotics and Automation, pp 146–151

  19. Dornhege C, Kleiner A (2013) A frontier-void-based approach for autonomous exploration in 3D. J Adv Robot 27(6):459–468

    Article  Google Scholar 

  20. Juliá M, Reinoso O, Gil A, Ballesta M, Payá L (2010) A hybrid solution to the multi-robot integrated exploration problem. J Eng Appl Artif Intell 23:473–486

    Article  Google Scholar 

  21. Maohai L, Han W, Lining S, Zesu C (2013) Robust omnidirectional mobile robot topological navigation system using omnidirectional vision. J Eng Appl Artif Intell 26(8):1942–1952

    Article  Google Scholar 

  22. Oriolo G, Vendittelli M, Freda L, Troso G (2004) The SRT Method : Randomized strategies for exploration. In: Proceeding of IEEE International Conference on Robotics and Automation (ICRA), pp 4688–4694

  23. El-Hussieny H, Assal SFM, Abdellatif M (2013) Improved Backtracking Algorithm for Efficient Sensor-Based Random Tree Exploration. In: Proceeding of Fifth International Conference on Computational Intelligence, Communication Systems and Networks, pp 19–24

  24. Freda L, Oriolo G (2005) Frontier-based probabilistic strategies for sensor-based exploration. In: Proceeding of IEEE International Conference on Robotics and Automation (ICRA), pp 3881–3887

  25. Franchi A, Oriolo G, Reda L, Vendittelli M (2007) A Decentralized Strategy for Cooperative Robot Exploration. In: Proceeding of First International Conference on Robot Communication and Coordination (ROBOCOMM), pp 1–8

  26. Gabriely Y, Rimon E (2002) Spiral-stc: an on-line coverage algorithm of grid environments by a mobile robot. In: Proceeding of EEE International Conference on Robotics and Automation (ICRA), vol 1, pp 954–960

  27. Gonzalez E, Alvarez O, Diaz Y, Parra C, Bustacara C (2005) Bsa: a complete coverage algorithm. In: Proceeding of EEE International Conference on Robotics and Automation (ICRA), pp 2040–2044

  28. Choi Y-H, Lee T-K, Baek S-H, Oh S-Y (2009) Online Complete Coverage Path Planning for Mobile Robots Based on Linked Spiral Paths Using Constrained Inverse Distance Transform. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5788–5793

  29. Lee T-K., Baek S-H., Choi Y-H., Oh S-Y. (2011) Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation. J Robot Auton Syst 59(10):801–812

    Article  Google Scholar 

  30. Galceran E, Carreras M (2013) A survey on coverage path planning for robotics. J Robot Auton Syst 61 (12):1258–1276

    Article  Google Scholar 

  31. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Article  MathSciNet  MATH  Google Scholar 

  32. Fritzke B (1993) Growing cell structures - a self-organizing network for unsupervised and supervised learning, Technical report-University of California

  33. Fritzke B (1995) A growing neural gas network learns topologies. Adv Neural Inf Process Syst 7:625–632

    Google Scholar 

  34. Jockusch J, Ritter H (1999) An instantaneous topological mapping model for correlated stimuli. In: Proceeding of International Joint Conference in Neural Networks (IJCNN ), vol 1, pp 529–534

  35. Botelho S, Rocha Cd, Oliveira G, Figueiredo M, Drews P (2010) Self Organizing Maps for AUVs Mapping. In: Proceeding of Third Southern Conference on Computational Modeling , pp 115–129

  36. Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Boston

    MATH  Google Scholar 

  37. Branke J, Deb K, Miettinen K, Slowiski R (2008) Multi objective Optimization - Interactive and Evolutionary Approaches, 2008th edn. Springer

  38. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  39. Roy B (1968) Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Rev d’Inf Rech Opér (RIRO), fra 8:57–75

    Google Scholar 

  40. Eiselt HA, Gendreau M, Laporte G (1995) Arc routing problems, part I: The Chinese postman problem. J Oper Res 43(2):231–242

    Article  MathSciNet  MATH  Google Scholar 

  41. Edmonds J, Johnson EL (1973) Matching, Euler tours and the Chinese postman. J Math Program 5 (1):88–124

    Article  MathSciNet  MATH  Google Scholar 

  42. Pearson D, Bryant V (2004) Decision Math 1: Advancing Maths for AQA. Advancing. Heinemann

  43. Fleischner H (1991) Eulerian Graphs and Related Topics, Part 1, vol 2. Elsevier, Amsterdam

  44. Larson RC, Odoni AR (1981) Urban Operations Research. Prentice-Hall

  45. Bullon G, Santiago L, Lorente M, Enrique L, Rojas B, Dolores PP (2011) Path planning for mobile robot navigation using voronoi diagram and fast marching. Int J Robot Autom (IJRA) 2(1):42–64

    Google Scholar 

  46. Zhang Z (2012) Microsoft Kinect Sensor and Its Effect, vol 19, pp 4–10

  47. Morgan Q, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source Robot Operating System. In: Proceeding of ICRA workshop on open source software

  48. Desai JP, Ostrowski J, Kumar V (1998) Controlling formations of multiple mobile robots. In: Proceeding of EEE International Conference on Robotics and Automation (ICRA), vol 4, pp 2864–2869

  49. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). J Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  50. Robin RM (2000) Introduction to AI Robotics. MIT Press Cambridge, MA, USA

    Google Scholar 

  51. Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288

    Article  Google Scholar 

  52. Ge SS, Cui YJ (2002) Dynamic motion planning for mobile robots using potential field method. Auton Robot 13(3):207–222

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by CNPq and FAPEMIG, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Javanmard Alitappeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeddisaravi, K., Alitappeh, R.J., A. Pimenta, L.C. et al. Multi-objective approach for robot motion planning in search tasks. Appl Intell 45, 305–321 (2016). https://doi.org/10.1007/s10489-015-0754-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-015-0754-y

Keywords

Navigation