Skip to main content
Log in

Scalable multi-agent learning algorithms to determine winners in combinatorial double auctions

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Many complex decision problems in the real world are very difficult to solve due to computational complexity. The winner determination problem (WDP) in combinatorial double auctions is one example of such complex problems. Although it allows buyers and sellers to submit bids and trade goods conveniently, the WDP in combinatorial double auctions is notoriously difficult to solve from computation point of view. It relies on the development of an effective mechanism to determine the winners. Multi-agent systems (MAS) provide an approach in which several agents attempt, through their interactions, to jointly solve a problem. An important issue in MAS is the design of multi-agent learning algorithms. In this paper, we will study the development of scalable multi-agent learning algorithms for solving the WDP in combinatorial double auctions. Instead of finding the exact solution, we will set up a fictitious market based on MAS architecture and develop multi-agent learning algorithms to reduce the computational complexity in solving the WDP of combinatorial double auctions. In the fictitious market, each buyer, each seller and the mediator is modeled by an agent. The issue is to develop learning algorithms for all the agents in the system to collectively solve the WDP in combinatorial double auctions. In this paper, we adopt a Lagrangian relaxation approach and a subgradient method to develop efficient multi-agent learning algorithms for solving the WDP in combinatorial double auctions. The effectiveness of the proposed multi-agent learning algorithms is also demonstrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrache J, Bourbeau B, Crainic TG, Gendreau M (2004) A new bidding framework for combinatorial e-auctions. Comput Oper Res 31(8):1177–1203

    Article  MATH  Google Scholar 

  2. Andersson A, Tenhunen M, Ygge F (2000) Integer programming for combinatorial auction winner determination. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp 39–46

  3. Ba S, Stallaert J, Whinston AB (2001) Optimal investment in knowledge within a firm using a market-mechanism. Manag Sci 47(9):1203–1219

    Article  MATH  Google Scholar 

  4. Block C, Neumann D, Weinhardt C (2008) A Market Mechanism for Energy Allocation in Micro-CHP Grids. In: Proceedings of the 41st Hawaii International Conference on System Sciences, pp 1–11

  5. Catalán J, Epstein R, Guajardo M, Yung D, Martınez C. (2009) Solving multiple scenarios in a combinatorial auction. Comput Oper Res 36(10):2752–2758

    Article  MATH  Google Scholar 

  6. Choi J H, Ahn H, Han I (2008) Utility-based double auction mechanism using genetic algorithms. Expert Syst Appl 34(1):150–158

    Article  MATH  Google Scholar 

  7. de Vries S, Vohra RV (2003) R. Combinatorial Auctions:A Survey. INFORMS J Comput 15(3):284–309

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujishima Y, Leyton-Brown K, Shoham Y (1999) Taming the computational complexity of combinatorial auctions:Optimal and approximate approaches. In: Sixteenth International Joint Conference on Artificial Intelligence, pp 548–553

  9. Fan M, Stallaert J, Whinston AB (1999) A web-based financial trading system. IEEE Comput 32(4):64–70

    Article  Google Scholar 

  10. Fisher M L (2004) Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12):1861–1871

    Article  Google Scholar 

  11. Gonen R, Lehmann D (2000) Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics, The Proceedings of the Second ACM Conference on Electronic Commerce (EC’00), pp 13–20

  12. Guo Y, Lim A, Rodrigues B, Tang J (2005) Using a Lagrangian heuristic for a combinatorial auction problem. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence

  13. Harsha P, Barnhart C, Parkes DC, Zhang H (2010) Strong activity rules for iterative combinatorial auctions. Comput Oper Res 37(7):1271–1284

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoos HH, Boutilier C (2000) Solving combinatorial auctions using stochastic local search. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence:22–29

  15. Hsieh F.S., Liao C.-S. (2012) Surplus Optimization in Combinatorial Double Auctions. Proceedings of The 6th International Conference on New Trends in Information Science and Service Science, pp 330–335

  16. Hsieh FS, Tsai SM (2008) Combinatorial Reverse Auction based on Lagrangian Relaxation, Proceedings of 2008 IEEE Asia-Pacific Services Computing Conference, pp 329-334

  17. Hsieh FS (2010) Combinatorial reverse auction based on revelation of Lagrangian multipliers. Decis Support Syst 48(2):323–330

    Article  Google Scholar 

  18. Hsieh FS, Lin JB (2012) Assessing the benefits of group-buying-based combinatorial reverse auctions. Electron Commer Res Appl 11(4):407–419

    Article  Google Scholar 

  19. Hsieh FS, Lin JB (2012) Virtual enterprises partner selection based on reverse auctions. Int J Adv Manuf Technol 62(5–8):847–859

    Article  Google Scholar 

  20. IBM ILOG CPLEX Optimizer (2012). http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  21. Jones JL, Koehler GJ (2002) Combinatorial auctions using rule-based bids. Decis Support Syst 34(1):59–74

    Article  Google Scholar 

  22. Leskelä R, Teich J, Wallenius H, Wallenius J (2007) Decision support for multi-unit combinatorial bundle auctions. Decis Support Syst 43(2):420–434

    Article  Google Scholar 

  23. Li L, Liu Y, Hausheer D, Stiller B (2009a) Design and evaluation of a combinatorial double auction for resource allocations in grids. Lect Notes Comput Sci 5539:3647

    Google Scholar 

  24. Li L, Liu Y, Liu K, Ma X, Yang M (2009b) Pricing in combinatorial double auction-based grid allocation model. J China Univ Posts Telecommun 16(3):5965

    Google Scholar 

  25. Meeus L, Verhaegen K, Belmans R (2009) Block order restrictions in combinatorial electric energy auctions. Eur J Oper Res 196(3):1202–1206

    Article  MATH  Google Scholar 

  26. Nicolaisen J, Petrov V, Tesfatsion L (2001) Market power and efficiency in a computational electricity market with discriminatory double-auction pricing. IEEE Trans Evol Comput 5(5):504523

    Article  Google Scholar 

  27. Özer A H, Özturan C (2009) A model and heuristic algorithms for multi-unit nondiscriminatory combinatorial auction. Comput Oper Res 36(1):196–208

    Article  MathSciNet  MATH  Google Scholar 

  28. Pekeč A, Rothkopf MH (2003) Combinatorial auction design. Management Science 49(11):14851503

    Google Scholar 

  29. Perugini D, Lambert D, Sterling L, Pearce A (2005) From Single Static to Multiple Dynamic Combinatorial Auctions, Intelligent Agent Technology, IEEE/WIC/ACM International Conference on 19-22, September, 2005, pp 443446

  30. Polyak B T (1969) Minimization of unsmooth functionals. USSR Computational Math Math Phys 9:14–29

  31. Rothkopf M, Pekeč A, Harstad R (1998) Computationally manageable combinational auctions. Management Science 44(8):11311147

    Article  Google Scholar 

  32. Sandholm T (1999) An algorithm for optimal winner determination in combinatorial auctions. In: Proc. IJCAI’99, Stockholm , p 542547

  33. Sandholm T (2000) Approaches to winner determination in combinatorial auctions. Dec Support Syst 28(1–2):165176

    Google Scholar 

  34. Sandholm T (2002) Algorithm for optimal winner determination in combinatorial auctions. Artif Intell 135(1–2):154

    MathSciNet  Google Scholar 

  35. Schellhorn H (2009) A double-sided multiunit combinatorial auction for substitutes: Theory and algorithms. Eur J Oper Res 197(2):799808

    Article  MathSciNet  Google Scholar 

  36. Vemuganti RR (1998) Applications of set covering, set packing and set partitioning models: a survey . In: Du D-Z (ed) Handbook of Combinatorial Optimization, vol 1. Kluwer Academic Publishers, p 573746. Netherlands

  37. Wang XJ, Yin H (2004) An incentive compatible double auction mechanism in electricity market. Autom Power Syst 28(18):7–15

    Google Scholar 

  38. Xia M, Stallaert J, Whinston AB (2005) Solving the combinatorial double auction problem. Eur J Oper Res 164(1):239–251

    Article  MATH  Google Scholar 

  39. Yang S, Segre AM, Codenotti B (2009) An optimal multiprocessor combinatorial auction solver. Comput Oper Res 36(1):149–166

    Article  MathSciNet  MATH  Google Scholar 

  40. Akella R, Kumar PR (1986) Optimal control of production rate in a failure-prone manufacturing systems. IEEE Trans Autom Control 31(2):116–126

    Article  MathSciNet  MATH  Google Scholar 

  41. Gershwin SB (1994) Manufacturing Systems Engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  42. Kimemia J, Gershwin SB (1983) An algorithm for the computer control of a fexible manufacturing system. IIE Trans 15(4):353–362

    Article  Google Scholar 

  43. Kumar PR (1993) Re-entrant lines. Queueing Syst: Theory Appl 13:87–110

    Article  MATH  Google Scholar 

  44. Altman E, Boulogne T, El Azouzi R, Jiménez T, Wynter L (2005) A survey on networking games in telecommunications. Comput Oper Res 33(2):286–311

    Article  Google Scholar 

  45. Altman E, Shimkin N (1998) Individual equilibrium and learning in processor sharing systems. Oper Res 46:776–784

    Article  MATH  Google Scholar 

  46. La R, Anantharam V (2002) Optimal routing control: Repeated game approach. IEEE Trans Autom Control 47(3):437–450

    Article  MathSciNet  Google Scholar 

  47. Orda A, Rom R, Shimkin N (1993) Competitive routing in multi-user communication networks. IEEE/ACM Trans Netw 1(5):510–521

    Article  Google Scholar 

  48. Roughgarden T, Selish Routing and the Price of Anarchy (2005). MIT Press, Cambridge

  49. Gordon Geoffrey J (2007) Agendas for multi-agent learning. Artif Intell 171(7):392–401

    Article  MATH  Google Scholar 

  50. Panait L, Luke S (2005) Cooperative multi-agent learning: the state of the art. Auton Agent Multi-Agent Syst 11(3):387–434

    Article  Google Scholar 

  51. Hsieh FS, Liao C-S (2014) Multi-agent Learning for Winner Determination in Combinatorial Auctions. Lect Notes Comput Sci 8481:1–10

    Article  Google Scholar 

  52. Ferber J (1999) Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence. Addison Wesley, Reading

    Google Scholar 

  53. Nilsson NJ (1998) Artificial intelligence: A new synthesis. Morgan Kaufmann Publishers Inc, San Francisco

    MATH  Google Scholar 

  54. Stone Peter, Veloso Manuela (2000) Multiagent Systems: A Survey from a Machine Learning Perspective. Autonom Robots 8(3):345–383

    Article  Google Scholar 

  55. Su C, Li H (2012) An affective learning agent with Petri-net-based implemen-tation. Appl Intell 37(4):569–585

    Article  MathSciNet  Google Scholar 

  56. Panait L., Luke S. (2005) Cooperative Multi-Agent Learning:The State of the Art. Auton Agent Multi-Agent Syst 11(3):387–434

    Article  Google Scholar 

  57. ’t Hoen PJ, Tuyls K, Panait L, Luke S, La Poutre JA (2006) An overview of cooperative and competitive multiagent learning. Lect Notes Comput Sci 3898:1–46

    Article  Google Scholar 

  58. Barto A, Sutton R , Watkins C (1991) Learning and sequential decision making. In: Gabriel M, Moore J (eds) Learning and computational neuroscience : foundations of adaptive networks. The M.I.T. Press.

  59. Kaelbling L, Littman M, Moore A (1996) Reinforcement learning: A survey. J Artif Intell Res 4:237–285

    Google Scholar 

  60. Sutton R (1988) Learning to predict by the methods of temporal differences. Mach Learn 3:9–44

    Google Scholar 

  61. Haynes T, Lau K, Sen S (1996) Learning cases to compliment rules for conflict resolution in multiagent systems. In: Sen S (ed) AAAI Spring Symposium on Adaptation. Coevolution, and Learning in Multiagent Systems, pp 51–56

  62. Haynes T, Sen S (1995) Evolving behavioral strategies in predators and prey. In: Weiß G , Sen S (eds) Adaptation and Learning in Multiagent Systems, Lecture Notes in Artificial Intelligence. Springer Verlag, Germany

    Google Scholar 

  63. Haynes T, Sen S, Schoenefeld D, Wainwright R (1995) Evolving a team. In: Siegel EV, Koza JR (eds) Working Notes for the AAAI Symposium on Genetic Programming. MIT, Cambridge, pp 23–30 . 10–12 Nov. AAAI

    Google Scholar 

  64. Iba H (1996) Emergent cooperation for multiple agents using genetic programming. In: Voigt H-M, Ebeling W, Rechenberg I , Schwefel H-P (eds) Parallel Problem Solving from Nature IV: Proceedings of the International Conference on Evolutionary Computation volume 1141 of LNCS. Springer Verlag, Germany, pp 32–41. ISBN 3-540-61723-X

    Chapter  Google Scholar 

  65. Iba H (1998) Evolutionary learning of communicating agents. Inf Sci:108

  66. von Neumann J, Morgenstern O (1944) The Theory of Games and Economic Behavior. Princeton University Press

  67. Owen G. (1982) Game Theory, 2nd Edn. Academic Press

  68. Straffin PD (1993) Game Theory and Strategy. Mathematical Association of America

Download references

Acknowledgments

This paper is currently supported in part by the Ministry of Science and Technology, Taiwan under Grant NSC102-2410-H-324-014-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Shiung Hsieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, FS., Liao, CS. Scalable multi-agent learning algorithms to determine winners in combinatorial double auctions. Appl Intell 43, 308–324 (2015). https://doi.org/10.1007/s10489-014-0643-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0643-9

Keywords

Navigation