Skip to main content
Log in

A GRASP-based metaheuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo holds

Applied Intelligence Aims and scope Submit manuscript

Abstract

Container terminals are open systems that generally serve as a transshipment zone between vessels and land vehicles. These terminals carry out a large number of planning and scheduling tasks. In this paper, we consider the problem of scheduling a number of incoming vessels by assigning a berthing position, a berthing time, and a number of Quay Cranes to each vessel. This problem is known as the Berth Allocation Problem and the Quay Crane Assignment Problem. Holds of vessels are also managed in order to obtain a more realistic approach. Our aim is to minimize the total waiting time elapsed to serve all these vessels. In this paper, we deal with the above problems and propose an innovative metaheuristic approach. The results are compared against other allocation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Procedure 7
Algorithm 8
Algorithm 9
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Ayvaz D, Topcuoglu H, Gurgen F (2012) Performance evaluation of evolutionary heuristics in dynamic environments. Appl Intell 37(1):130–144

    Article  Google Scholar 

  2. Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202(3):615–627

    Article  MATH  Google Scholar 

  3. Cheong C, Tan K, Liu D (2009) Solving the berth allocation problem with service priority via multi-objective optimization. In: IEEE symposium on computational intelligence in scheduling, 2009, CI-sched ’09, pp 95–102

    Chapter  Google Scholar 

  4. Christiansen M, Fagerholt K, Ronen D (2004) Ship routing and scheduling: status and perspectives. Transp Sci 38(1):1–18

    Article  Google Scholar 

  5. Consultants DS (2010) Global container terminal operators annual review and forecast. Annual Report

  6. Cordeau J, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the berth-allocation problem. Transp Sci 39(4):526–538

    Article  Google Scholar 

  7. Daganzo C (1989) The crane scheduling problem. Transp Res, Part B, Methodol 23(3):159–175

    Article  MATH  MathSciNet  Google Scholar 

  8. Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Glob Optim 6(2):109–133

    Article  MATH  MathSciNet  Google Scholar 

  9. Festa P, Resende MG (2009) An annotated bibliography of grasp–part ii: applications. Int Trans Oper Res 16(2):131–172

    Article  MATH  MathSciNet  Google Scholar 

  10. Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation problem. Transp Res, Part B, Methodol 44(2):232–245

    Article  Google Scholar 

  11. Guan Y, Cheung R (2004) The berth allocation problem: models and solution methods. OR Spektrum 26(1):75–92

    Article  MATH  MathSciNet  Google Scholar 

  12. Henesey L (2006) Overview of transshipment operations and simulation. In: MedTrade conference, Malta, April 2006, pp 6–7

    Google Scholar 

  13. Imai A, Nagaiwa K, Tat C (1997) Efficient planning of berth allocation for container terminals in Asia. J Adv Transp 31(1):75–94

    Article  Google Scholar 

  14. Imai A, Chen H, Nishimura E, Papadimitriou S (2008) The simultaneous berth and quay crane allocation problem. Transp Res, Part E, Logist Transp Rev 44(5):900–920

    Article  Google Scholar 

  15. Kim K, Günther H (2006) Container terminals and cargo systems. Springer, Berlin

    Google Scholar 

  16. Kim KH, Park YM (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156(3):752–768

    Article  MATH  Google Scholar 

  17. Lai KK, Shih K (1992) A study of container berth allocation. J Adv Transp 26(1):45–60

    Google Scholar 

  18. Lambrechts O, Demeulemeester E, Herroelen W (2008) Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. J Sched 11(2):121–136

    Article  MATH  MathSciNet  Google Scholar 

  19. Lee D, Wang H, Miao L (2008) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res, Part E, Logist Transp Rev 44(1):124–135

    Article  Google Scholar 

  20. Lee DH, Chen JH, Cao JX (2010) The continuous berth allocation problem: a greedy randomized adaptive search solution. Transp Res, Part E, Logist Transp Rev 46(6):1017–1029

    Article  Google Scholar 

  21. Liang C, Huang Y, Yang Y (2009) A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput Ind Eng 56(3):1021–1028

    Article  Google Scholar 

  22. Lim A (1998) The berth planning problem. Oper Res Lett 22(2–3):105–110

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu J, Wan YW, Wang L (2006) Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Nav Res Logist 53(1):60–74

    Article  MATH  MathSciNet  Google Scholar 

  24. Meisel F, Bierwirth C (2009) Heuristics for the integration of crane productivity in the berth allocation problem. Transp Res, Part E, Logist Transp Rev 45(1):196–209

    Article  Google Scholar 

  25. Mohi-Eldin E, Mohamed E (2010) The impact of the financial crisis on container terminals (a global perspectives on market behavior). In: Proceedings of 26th international conference for seaports & maritime transport

    Google Scholar 

  26. Park Y, Kim K (2003) A scheduling method for berth and quay cranes. OR Spektrum 25(1):1–23

    Article  MATH  Google Scholar 

  27. Peterkofsky R, Daganzo C (1990) A branch and bound solution method for the crane scheduling problem. Transp Res, Part B, Methodol 24(3):159–172

    Article  Google Scholar 

  28. Rodríguez-Molins M, Salido MA, Barber F (2010) Domain-dependent planning heuristics for locating containers in maritime terminals. In: Proceedings of the 23rd international conference on industrial engineering and other applications of applied intelligent systems. LNCS, vol 6096. Springer, Berlin, pp 742–751

    Google Scholar 

  29. Rodriguez-Molins M, Salido M, Barber F (2012) Intelligent planning for allocating containers in maritime terminals. Expert Syst Appl 39(1):978–989

    Article  Google Scholar 

  30. Salido M, Sapena O, Barber F (2009) An artificial intelligence planning tool for the container stacking problem. In: Proceedings of the 14th IEEE international conference on emerging technologies and factory automation, pp 532–535

    Google Scholar 

  31. Salido MA, Rodriguez-Molins M, Barber F (2012) A decision support system for managing combinatorial problems in container terminals. Knowl-Based Syst 29:63–74

    Article  Google Scholar 

  32. Stahlbock R, VoßS (2008) Operations research at container terminals: a literature update. OR Spektrum 30(1):1–52

    Article  MATH  Google Scholar 

  33. Steenken D, VoßS, Stahlbock R (2004) Container terminal operation and operations research-a classification and literature review. OR Spektrum 26(1):3–49

    Article  MATH  Google Scholar 

  34. Szlapczynski R, Szlapczynska J (2012) On evolutionary computing in multi-ship trajectory planning. Appl Intell 37:155–174

    Article  Google Scholar 

  35. Theofanis S, Boile M, Golias M (2009) Container terminal berth planning. Transp Res Rec 2100:22–28

    Article  Google Scholar 

  36. ValenciaPort F (2009) Automation and simulation methodologies for assessing and improving the capacity, performance and service level of port container terminals. Ministerio de Fomento (P19/08), Spain

  37. Vis I, De Koster R (2003) Transshipment of containers at a container terminal: an overview. Eur J Oper Res 147:1–16

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the research projects TIN2010-20976-C02-01 (Ministerio de Ciencia e Innovación, Spain) the fellowship program FPU (AP2010-4405), and also with the collaboration of the maritime container terminal MSC (Mediterranean Shipping Company S.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rodriguez-Molins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Molins, M., Salido, M.A. & Barber, F. A GRASP-based metaheuristic for the Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo holds. Appl Intell 40, 273–290 (2014). https://doi.org/10.1007/s10489-013-0462-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0462-4

Keywords

Navigation