Advertisement

Applied Intelligence

, Volume 38, Issue 4, pp 566–585 | Cite as

On the effect of calibration in classifier combination

  • Antonio BellaEmail author
  • Cèsar Ferri
  • José Hernández-Orallo
  • María José Ramírez-Quintana
Article

Abstract

A general approach to classifier combination considers each model as a probabilistic classifier which outputs a class membership posterior probability. In this general scenario, it is not only the quality and diversity of the models which are relevant, but the level of calibration of their estimated probabilities as well. In this paper, we study the role of calibration before and after classifier combination, focusing on evaluation measures such as MSE and AUC, which better account for good probability estimation than other evaluation measures. We present a series of findings that allow us to recommend several layouts for the use of calibration in classifier combination. We also empirically analyse a new non-monotonic calibration method that obtains better results for classifier combination than other monotonic calibration methods.

Keywords

Classifier combination Classifier calibration Classifier diversity Probability estimation Calibration measures Separability measures 

Notes

Acknowledgements

We thank the anonymous reviewers for their comments, which have helped to improve this paper significantly. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022, COST action IC0801 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, and the REFRAME project granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economía y Competitividad in Spain.

References

  1. 1.
    Amemiya T (1973) Regression analysis when the dependent variable is truncated normal. Econometrica 41(6):997–1016 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ayer M, Brunk H, Ewing G, Reid W, Silverman E (1955) An empirical distribution function for sampling with incomplete information. Ann Math Stat 5:641–647 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bella A, Ferri C, Hernandez-Orallo J, Ramirez-Quintana M (2009) Calibration of machine learning models. In: Handbook of research on machine learning applications. IGI Global, Hershey, pp 128–146 CrossRefGoogle Scholar
  4. 4.
    Bella A, Ferri C, Hernández-Orallo J, Ramírez-Quintana M (2009) Similarity-binning averaging: a generalisation of binning calibration. In: Intelligent data engineering and automated learning—IDEAL 2009. Lecture notes in computer science, vol 5788. Springer, Berlin/Heidelberg, pp 341–349 CrossRefGoogle Scholar
  5. 5.
    Bennett PN (2006) Building reliable metaclassifiers for text learning. PhD thesis, Carnegie Mellon University Google Scholar
  6. 6.
    Bennett PN, Dumais ST, Horvitz E (2005) The combination of text classifiers using reliability indicators. Inf Retr 8(1):67–98 CrossRefGoogle Scholar
  7. 7.
    Blake C, Merz C (1998) UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html
  8. 8.
    Breiman L (1996) Bagging predictors. Mach Learn 24:123–140 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brier G (1950) Verification of forecasts expressed in terms of probabilities. Mon Weather Rev 78:1–3 CrossRefGoogle Scholar
  10. 10.
    Brümmer N (2010) Measuring, refining and calibrating speaker and language information extracted from speech. PhD thesis, University of Stellenbosch Google Scholar
  11. 11.
    Canuto A, Santos A, Vargas R (2011) Ensembles of artmap-based neural networks: an experimental study. Appl Intell 35:1–17 CrossRefGoogle Scholar
  12. 12.
    Caruana R, Munson A, Mizil AN (2006) Getting the most out of ensemble selection. In: ICDM ’06: proceedings of the sixth international conference on data mining. IEEE Computer Society, Washington, pp 828–833 CrossRefGoogle Scholar
  13. 13.
    Caruana R, Niculescu-Mizil A (2004) Data mining in metric space: an empirical analysis of supervised learning performance criteria. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’04. ACM Press, New York, pp 69–78 Google Scholar
  14. 14.
    Cohen I, Goldszmidt M (2004) Properties and benefits of calibrated classifiers. In: Proceedings of the 8th European conference on principles and practice of knowledge discovery in databases, PKDD ’04. Springer, Berlin, pp 125–136 Google Scholar
  15. 15.
    Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems, MCS ’00. Springer, London, pp 1–15 CrossRefGoogle Scholar
  17. 17.
    Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40:139–157 CrossRefGoogle Scholar
  18. 18.
    Fahim M, Fatima I, Lee S, Lee Y (2012) Eem: evolutionary ensembles model for activity recognition in smart homes. Appl Intell, 1–11. doi: 10.1007/s10489-012-0359-7
  19. 19.
    Ferri C, Flach P, Hernández-Orallo J (2004) Delegating classifiers. In: Proceedings of the twenty-first international conference on machine learning, ICML ’04. ACM Press, New York, pp 37–45 CrossRefGoogle Scholar
  20. 20.
    Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30:27–38 CrossRefGoogle Scholar
  21. 21.
    Ferri C, Hernández-Orallo J, Salido M (2003) Volume under the ROC surface for multi-class problems. Exact computation and evaluation of approximations. In: Proceedings of 14th European conference on machine learning, pp 108–120 Google Scholar
  22. 22.
    Flach P, Blockeel H, Ferri C, Hernández-Orallo J, Struyf J (2003) Decision support for data mining: an introduction to ROC analysis and its applications. In: Data mining and decision support: integration and collaboration. Kluwer Academic, Boston, pp 81–90 CrossRefGoogle Scholar
  23. 23.
    Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: International conference on machine learning, pp 148–156 Google Scholar
  24. 24.
    Gama J, Brazdil P (2000) Cascade generalization. Mach Learn 41:315–343 zbMATHCrossRefGoogle Scholar
  25. 25.
    Garczarek U (2002) Classification rules in standardized partition spaces. PhD thesis, Universitat Dortmund Google Scholar
  26. 26.
    Gebel M (2009) Multivariate calibration of classifier scores into the probability space. PhD thesis, University of Dortmund Google Scholar
  27. 27.
    Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 45:171–186 zbMATHCrossRefGoogle Scholar
  28. 28.
    Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14(4):382–417 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Khor K, Ting C, Phon-Amnuaisuk S (2012) A cascaded classifier approach for improving detection rates on rare attack categories in network intrusion detection. Appl Intell 36:320–329 CrossRefGoogle Scholar
  30. 30.
    Kuncheva LI (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Pattern Anal Mach Intell 24:281–286 CrossRefGoogle Scholar
  31. 31.
    Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New York zbMATHCrossRefGoogle Scholar
  32. 32.
    Kuncheva LI (2005) Diversity in multiple classifier systems. Inf Fusion 6(1):3–4 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51:181–207 zbMATHCrossRefGoogle Scholar
  34. 34.
    Lee H, Kim E, Pedrycz W (2012) A new selective neural network ensemble with negative correlation. Appl Intell, 1–11. doi: 10.1007/s10489-012-0342-3
  35. 35.
    Maudes J, Rodríguez J, García-Osorio C, Pardo C (2011) Random projections for linear svm ensembles. Appl Intell 34:347–359 CrossRefGoogle Scholar
  36. 36.
    Murphy AH (1972) Scalar and vector partitions of the probability score: part II. n-State situation. J Appl Meteorol 11:1182–1192 Google Scholar
  37. 37.
    Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers. MIT Press, Boston, pp 61–74 Google Scholar
  38. 38.
    Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Rev, p 133 Google Scholar
  39. 39.
    Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141 MathSciNetzbMATHGoogle Scholar
  40. 40.
    Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Wiley, New York zbMATHGoogle Scholar
  41. 41.
    Souza L, Pozo A, Rosa J, Neto A (2010) Applying correlation to enhance boosting technique using genetic programming as base learner. Appl Intell 33:291–301 CrossRefGoogle Scholar
  42. 42.
    Tulyakov S, Jaeger S, Govindaraju V, Doermann D (2008) Review of classifier combination methods. In: Marinai HFS (ed) Studies in computational intelligence: machine learning in document analysis and recognition. Springer, Berlin, pp 361–386 CrossRefGoogle Scholar
  43. 43.
    Verma B, Hassan S (2011) Hybrid ensemble approach for classification. Appl Intell 34:258–278 CrossRefGoogle Scholar
  44. 44.
    Wang C, Hunter A (2010) A low variance error boosting algorithm. Appl Intell 33:357–369 CrossRefGoogle Scholar
  45. 45.
    Witten IH, Frank E (2002) Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Rec 31:76–77 CrossRefGoogle Scholar
  46. 46.
    Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259 CrossRefGoogle Scholar
  47. 47.
    Zadrozny B, Elkan C (2002) Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’02. ACM Press, New York, pp 694–699 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Antonio Bella
    • 1
    Email author
  • Cèsar Ferri
    • 1
  • José Hernández-Orallo
    • 1
  • María José Ramírez-Quintana
    • 1
  1. 1.DSIC-ELPUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations