Applied Intelligence

, Volume 36, Issue 1, pp 208–228 | Cite as

Formation conditions of mutual adaptation in human-agent collaborative interaction

  • Yong Xu
  • Yoshimasa Ohmoto
  • Shogo Okada
  • Kazuhiro Ueda
  • Takanori Komatsu
  • Takeshi Okadome
  • Koji Kamei
  • Yasuyuki Sumi
  • Toyoaki Nishida


When an adaptive agent works with a human user in a collaborative task, in order to enable flexible instructions to be issued by ordinary people, it is believed that a mutual adaptation phenomenon can enable the agent to handle flexible mapping relations between the human user’s instructions and the agent’s actions. To elucidate the conditions required to induce the mutual adaptation phenomenon, we designed an appropriate experimental environment called “WAITER” (Waiter Agent Interactive Training Experimental Restaurant) and conducted two experiments in this environment. The experimental results suggest that the proposed conditions can induce the mutual adaptation phenomenon.


Human-agent interaction Mutual adaptation Waiter agent Think-aloud method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ana I, Paloma M, Ricardo A, Fernando F (2009) Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning. Appl Intell 31(1):89–106 CrossRefGoogle Scholar
  2. 2.
    Ide T, Inoue K (2005) Knowledge discovery from heterogeneous dynamic systems using change-point correlations. In: The SIAM international conference on data mining (SDM 05), pp 571–576 Google Scholar
  3. 3.
    Kato R, Yokoi H, Arieta AH, Yu W, Arai T (2009) Mutual adaptation among man and machine by using f-MRI analysis. Robot Auton Syst 57(2):161–166 CrossRefGoogle Scholar
  4. 4.
    Kim HR, Chan PK (2008) Learning implicit user interest hierarchy for context in personalization. Appl Intell 28(2):153–166 CrossRefGoogle Scholar
  5. 5.
    Komagome D, Suzuki M, Ono T, Yamada S (2006) A design of robot meme cultural learning, transmitting and creation by human-robot mutual-adaptation. IPSJ SIG Notes ICS (131):7–12 Google Scholar
  6. 6.
    Komatsu T, Utsunomiya A, Suzuki K, Ueda K, Hiraki K, Oka N (2005) Experiments toward a mutual adaptive speech interface that adopts the cognitive features humans use for communication and induces and exploits users’ adaptation. Int J Hum-Comput Interact 18(3):243–268 CrossRefGoogle Scholar
  7. 7.
    Komatsu T, Ohmoto Y, Ueda K, Okadome T, Kamei K, Xu Y, Sumi Y, Nishida T (2008) Definition of mutual adaptation processes based on Akaike’s information criterion. In: The 7th international workshop on social intelligence design (SID 2008), Puerto Rico Google Scholar
  8. 8.
    Kon H, Miyake Y (2005) An analysis and modeling of mutual synchronization process in cooperative tapping. J Hum Interface Soc 7(4):61–70 Google Scholar
  9. 9.
    Martin GR, Jorge M, Agueda V, Marcos GG (2009) Improving accessibility with user-tailored interfaces. Appl Intell 30(1):65–71 CrossRefGoogle Scholar
  10. 10.
    Mohammad Y, Nishida T (2009) Robust singular spectrum transform. In: Next generation applied intelligence (the twenty second international conference on industrial, engineering & other applications of applied intelligent systems (IEA/AIE 2009)) Taiwan. LNAI, vol 5579. Springer, Berlin, pp 123–132 Google Scholar
  11. 11.
    Ogata T, Sugano S, Tani J (2005) Open-end human-robot interaction from the dynamical systems perspective: mutual adaptation and incremental learning. Adv Robot 19(6):651–670 CrossRefGoogle Scholar
  12. 12.
    Thomaz AL, Breazeal C (2008) Teachable robots: Understanding human teaching behavior to build more effective robot learners. Artif Intell 172:716–737 CrossRefGoogle Scholar
  13. 13.
    Ueda K (2006) Mutually adaptive learning: a time factor in human-agent interaction. J JSAI (Japanese Society for Artificial Intelligence) 21(6):675–680 Google Scholar
  14. 14.
    Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244 CrossRefGoogle Scholar
  15. 15.
    Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E (2001) Autonomous mental development by robots and animals. Science 291:599–600 CrossRefGoogle Scholar
  16. 16.
    Xu Y, Ohmoto Y, Ueda K, Komatsu T, Okadome T, Kamei K, Okada S, Sumi Y, Nishida T (2008) Two-layered communicative protocol model in a cooperative directional guidance task. In: The 7th international workshop on social intelligence design (SID2008), Puerto Rico Google Scholar
  17. 17.
    Xu Y, Ueda K, Komatsu T, Okadome T, Hattori T, Sumi Y, Nishida T (2008) Woz experiments for understanding mutual adaptation. AI Soc 23(2):201–212 CrossRefGoogle Scholar
  18. 18.
    Yamada S, Koh K (2003) Idea: Interaction design for adaptation. J Jpn Soc Fuzzy Theory Intell Inform 15(2):185 (in Japanese) Google Scholar
  19. 19.
    Yamada S, Yamaguchi T (2004) Training aibo like a dog. In: The 13th international workshop on robot and human interactive communication (ROMAN-2004), Kurashiki, Japan, pp 431–436 Google Scholar
  20. 20.
    Yamada S, Yamaguchi T (2005) Mutual adaptation of mind mappings between a human and a life-like agent. J Jpn Soc Fuzzy Theory Intell Inform 17(3):289–297 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yong Xu
    • 1
  • Yoshimasa Ohmoto
    • 2
  • Shogo Okada
    • 2
  • Kazuhiro Ueda
    • 3
  • Takanori Komatsu
    • 4
  • Takeshi Okadome
    • 5
  • Koji Kamei
    • 6
  • Yasuyuki Sumi
    • 2
  • Toyoaki Nishida
    • 2
  1. 1.Division of Advanced Information Technology & Computer Science, Institute of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Graduate School of InformaticsKyoto UniversityKyotoJapan
  3. 3.Department of System SciencesThe University of TokyoTokyoJapan
  4. 4.International Young Researcher Empowerment CenterShinshu UniversityNaganoJapan
  5. 5.School of Technology and ScienceKwansei Gakuin UniversityOsakaJapan
  6. 6.Advanced Telecommunications Research Institute InternationalKyotoJapan

Personalised recommendations