Skip to main content
Log in

GPARS: a general-purpose activity recognition system

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The fundamental problem of the existing Activity Recognition (AR) systems is that these are not general-purpose. An AR system trained in an environment would only be applicable to that environment. Such a system would not be able to recognize the new activities of interest. In this paper we propose a General-Purpose Activity Recognition System (GPARS) using simple and ubiquitous sensors. It would be applicable to almost any environment and would have the ability to handle growing amounts of activities and sensors in a graceful manner (Scalable). Given a set of activities to monitor, object names (with embedded sensors) and their corresponding locations, the GPARS first mines activity knowledge from the web, and then uses them as the basis of AR. The novelty of our system, compared to the existing general-purpose systems, lies in: (1) it uses more robust activity models, (2) it significantly reduces the mining time. We have tested our system with three real world datasets. It is observed that the accuracy of activity recognition using our system is more than 80%. Our proposed mechanism yields significant improvement (more than 30%) in comparison with its counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodges MR, Pollack ME (2007) An ‘object-use fingerprint’: The use of electronic sensors for human identification. In: Proc UbiComp, pp 289–303

  2. Hu DH, Pan SJ, Zheng VW, Liu NN, Yang Q (2008) Real world activity recognition with multiple goals. In: Proc UbiComp. ACM, New York, pp 30–39. doi:10.1145/1409635.1409640

    Chapter  Google Scholar 

  3. Hu DH, Yang Q (2008) Cigar: Concurrent and interleaving goal and activity recognition. In: Fox D, Gomes CP (eds) Proc AAAI. AAAI Press, Menlo Park, pp 1363–1368

    Google Scholar 

  4. Patterson DJ, Liao L, Fox D, Kautz HA (2003) Inferring high-level behavior from low-level sensors. In: Dey AK et al (ed) UbiComp 2003: Ubiquitous computing, 5th international conference, Seattle, WA, USA, October 12–15, 2003, Proceedings. Lecture notes in computer science, vol 2864. Springer, Berlin, pp 73–89

    Google Scholar 

  5. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha A, Mattern F (eds) Pervasive. Lecture notes in computer science, vol 3001. Springer, Berlin, pp 158–175

    Chapter  Google Scholar 

  6. van Kasteren T, Noulas A, Englebienne G, Kröse B (2008) Accurate activity recognition in a home setting. In: Proc UbiComp. ACM, New York, pp 1–9. doi:10.1145/1409635.1409637

    Chapter  Google Scholar 

  7. Intille SS, Rondoni J, Kukla C, Ancona I, Bao L (2003) A context-aware experience sampling tool. In: CHI ’03: CHI ’03 extended abstracts on Human factors in computing systems. ACM, New York, pp 972–973. doi:10.1145/765891.766101

    Chapter  Google Scholar 

  8. Intille SS, Tapia EM, Rondoni J, Beaudin J, Kukla C, Agarwal S, Bao L, Larson K (2003) Tools for studying behavior and technology in natural settings. In: Dey AK et al (ed) UbiComp 2003: ubiquitous computing, 5th international conference, Seattle, WA, USA, October 12–15, 2003, Proceedings. Lecture notes in computer science, vol 2864. Springer, Berlin, pp 157–174

    Google Scholar 

  9. Consolvo S, Walker M (2003) Using the experience sampling method to evaluate UbiComp applications. IEEE Pervasive Comput 2(2):24–31. doi:10.1109/MPRV.2003.1203750

    Article  Google Scholar 

  10. Cilibrasi R, Vitányi PMB (2007) The Google similarity distance. IEEE Trans Knowl Data Eng 19(3):370–383

    Article  Google Scholar 

  11. Perkowitz M, Philipose M, Fishkin K, Patterson DJ (2004) Mining models of human activities from the web. In: WWW ’04: Proceedings of the 13th international conference on World Wide Web. ACM, New York, pp 573–582. doi:10.1145/988672.988750

    Chapter  Google Scholar 

  12. Wyatt D, Philipose M, Choudhury T (2005) Unsupervised activity recognition using automatically mined common sense. In: Veloso MM, Kambhampati S (eds) Proc AAAI. AAAI Press/The MIT Press, Menlo Park, pp 21–27. http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2005.html#WyattPC05

    Google Scholar 

  13. Exploratory research projects (accessed: 2009, July 22). Available: http://techresearch.intel.com/articles/Exploratory/1435.htm

  14. Smart medical home research laboratory (accessed: 2009, July 22). Available: http://www.futurehealth.rochester.edu/smart_home/

  15. The aware home research initiative (accessed: 2009, July 22). Available: http://awarehome.imtc.gatech.edu/

  16. Mit house_n (accessed: 2009, July 22). Available: http://architecture.mit.edu/house_n/

  17. Smart houses info (accessed: 2009, July 22). Available: http://gero-tech.net/smart-homes.html

  18. Intille SS, Larson K, Tapia EM, Beaudin J, Kaushik P, Nawyn J, Rockinson R (2006) Using a live-in laboratory for ubiquitous computing research. In: Fishkin KP, Schiele B, Nixon P, Quigley AJ (eds) Pervasive. Lecture notes in computer science, vol 3968. Springer, Berlin, pp 349–365

    Chapter  Google Scholar 

  19. Fox D (2007) Location-based activity recognition. In: KI ’07: Proceedings of the 30th annual German conference on Advances in Artificial Intelligence. Springer, Berlin, Heidelberg, pp 51–51. doi:10.1007/978-3-540-74565-5_6

    Google Scholar 

  20. Liao L, Fox D, Kautz HA (2005) Location-based activity recognition using relational Markov networks. In: Kaelbling LP, Saffiotti A (eds) IJCAI. Professional Book Center, Denver, pp 773–778. http://www.informatik.uni-trier.de/ley/db/conf/ijcai/ijcai2005.html#LiaoFK05

    Google Scholar 

  21. Sarkar AMJ, Lee YK, Lee S (2010) A smoothed Naïve Bayes based classifier for activity recognition. IETE Tech Rev 27(2):107–119. doi:10.4103/0256-4602.60164

    Article  Google Scholar 

  22. Jelinek F, Mercer RL (1980) Interpolated estimation of Markov source parameters from sparse data. In: Gelsema ES, Kanal LN (eds) Proceedings, workshop on pattern recognition in practice. North Holland, Amsterdam, pp 381–397

    Google Scholar 

  23. The essentials of Google search (accessed: 2009, July 22). Available: http://www.google.com/support/bin/static.py?page=searchguides.html&ctx=basics

  24. Google search basics: More search help—web search help (accessed: 2009, July 22). Available: http://www.google.com/support/websearch/bin/answer.py?hl=en&answer=136861

  25. Katz S, Down T, Cash H et al (1970) Progress in the development of the index of adl. Gerontologist 10:20–30

    Article  Google Scholar 

  26. Korpipää P, Koskinen M, Peltola J, Mäkelä SM, Seppänen T (2003) Bayesian approach to sensor-based context awareness. Pers Ubiquitous Comput 7(2):113–124. doi:10.1007/s00779-003-0237-8

    Article  Google Scholar 

  27. Hu DH, Zhang XX, Yin J, Zheng VW, Yang Q (2009) Abnormal activity recognition based on hdp-hmm models. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/view/521

  28. Buettner M, Prasad R, Philipose M, Wetherall D (2009) Recognizing daily activities with rfid-based sensors. In: UbiComp ’09: Proceedings of the 11th international conference on Ubiquitous computing. ACM, New York, pp 51–60. doi:10.1145/1620545.1620553

    Chapter  Google Scholar 

  29. Lian CC, Hsu JYJ (2008) Chatting activity recognition in social occasions using factorial conditional random fields with iterative classification. In: AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence. AAAI Press, Menlo Park, pp 1814–1815

    Google Scholar 

  30. Vail DL, Veloso MM, Lafferty JD (2007) Conditional random fields for activity recognition. In: AAMAS ’07: Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems. ACM, New York, pp 1–8. doi:10.1145/1329125.1329409

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Koo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, J., Vinh, L.T., Lee, YK. et al. GPARS: a general-purpose activity recognition system. Appl Intell 35, 242–259 (2011). https://doi.org/10.1007/s10489-010-0217-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-010-0217-4

Keywords

Navigation