Skip to main content
Log in

Suboptimal nonlinear predictive control based on multivariable neural Hammerstein models

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper describes a computationally efficient nonlinear Model Predictive Control (MPC) algorithm in which the neural Hammerstein model is used. The Multiple-Input Multiple-Output (MIMO) dynamic model contains a neural steady-state nonlinear part in series with a linear dynamic part. The model is linearized on-line, as a result the MPC algorithm requires solving a quadratic programming problem, the necessity of nonlinear optimization is avoided. A neutralization process is considered to discuss properties of neural Hammerstein models and to show advantages of the described MPC algorithm. In practice, the algorithm gives control performance similar to that obtained in nonlinear MPC, which hinges on non-convex optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abonyi J, Babuška J, Ayala Botto M, Szeifert F, Nagy L (2000) Identification and control of nonlinear systems using fuzzy Hammerstein models. Ind Eng Chem Res 39:4302–4314

    Article  Google Scholar 

  2. Al-Duwaish H, Karim MN, Chandrasekar V (1997) Hammerstein model identification by multilayer feedforward neural networks. Int J Syst Sci 28:49–54

    Article  MATH  Google Scholar 

  3. Aoubi M (1998) Comparison between the dynamic multi-layered perceptron and generalised Hammerstein model for experimental identification of the loading process in diesel engines. Control Eng Pract 6:271–279

    Article  Google Scholar 

  4. Åkesson BM, Toivonen HT (2006) A neural network model predictive controller. J Process Control 16:937–946

    Article  Google Scholar 

  5. Bazaraa MS, Sherali J, Shetty K (1999) Nonlinear programming: theory and algorithms. Prentice Hall, New York

    Google Scholar 

  6. Billings SA, Fakhouri SY (1982) Identification of systems containing linear dynamic and static nonlinear elements. Automatica 18:15–26

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan KH, Bao J (2007) Model predictive control of Hammerstein systems with multivariable nonlinearities. Ind Eng Chem Res 46:168–180

    Article  Google Scholar 

  8. Chang FH, Luus R (1971) A noniterative method of identification using Hammerstein model. IEEE Trans Autom Control 16:464–468

    Article  Google Scholar 

  9. Chen J, Huang TC (2004) Applying neural networks to on-line updated PID controllers for nonlinear process control. J Proc Control 14:211–230

    Article  Google Scholar 

  10. Ej Dempsey, Westwick DT (2004) Identification of Hammerstein models with cubic spline nonlinearities. IEEE Trans Biomed Eng 51:237–245

    Article  Google Scholar 

  11. Dougherty D, Cooper D (2003) A practical multiple model adaptive strategy for single-loop MPC. Control Eng Pract 11:141–159

    Article  Google Scholar 

  12. Eskinat E, Johnson S, Luyben WL (1991) Use of Hammerstein models in identification of nonlinear systems. AIChE J 37:255–268

    Article  Google Scholar 

  13. Fruzzetti KP, Palazoğlu A, McDonald KA (1997) Nonlinear model predictive control using Hammerstein models. J Proc Control 7:31–41

    Article  Google Scholar 

  14. Goethals I, Pelckmans K, Suykens JAK, De Moor B (2005) Identification of MIMO Hammerstein models using least squares support vector machines. Automatica 41:1263–1272

    Article  MATH  Google Scholar 

  15. Greblicki W (1989) Non-parametric orthogonal series identification Hammerstein systems. Int J Syst Sci 20:2355–2367

    Article  MATH  MathSciNet  Google Scholar 

  16. Gustafsson T, Waller K (1992) Nonlinear and adaptive control of pH. Ind Eng Chem Res 31:2681–2693

    Article  Google Scholar 

  17. Harnischmacher G, Marquardt W (2007) Nonlinear model predictive control of multivariable processes using block-structured models. Control Eng Pract 15:1238–1256

    Article  Google Scholar 

  18. Haykin S (1999) Neural networks—a comprehensive foundation. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  19. Henson MA (1998) Nonlinear model predictive control: current status and future directions. Comput Chem Eng 23:187–202

    Article  Google Scholar 

  20. Henson MA, Seborg DE (1994) Adaptive nonlinear control of a pH neutralization process. IEEE Trans Control Syst Technol 2:169–182

    Article  Google Scholar 

  21. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  22. Hu Q, Saha P, Rangaiah GP (2000) Experimental evaluation of an augmented IMC for nonlinear systems. Control Eng Pract 8:1167–1176

    Article  Google Scholar 

  23. Hussain MA (1999) Review of the applications of neural networks in chemical process control—simulation and online implementation. Artif Intell Eng 13:55–68

    Article  Google Scholar 

  24. Ingram A, Matthew A, Franchek A, Balakrishnan V, Surnilla G (2005) Robust SISO H controller design for nonlinear systems. Control Eng Pract 13:1413–1423

    Article  Google Scholar 

  25. Janczak A (2004) Identification of nonlinear systems using neural networks and polynomial models: block oriented approach. Springer, London

    Google Scholar 

  26. Knohl T, Xu WM, Unbehauen H (2003) Indirect adaptive dual control for Hammerstein systems using ANN. Control Eng Pract 11:377–385

    Article  Google Scholar 

  27. Lakshminarayanan S, Shah SL, Nandakumar K (1995) Identification of Hammerstein models using multivariate statistical tools. Chem Eng Sci 50:3599–3613

    Article  Google Scholar 

  28. Ling WM, Rivera D (1998) Nonlinear black-box identification of distillation column models—design variable selection for model performance enhancement. Int J Appl Math Comput Sci 8:793–813

    MATH  Google Scholar 

  29. Loh AP, De DS, Krishnaswamy PR (2004) pH and level controller for a pH neutralization process. Ind Eng Chem Res 40:3579–3584

    Article  Google Scholar 

  30. Lu Y, Arkun Y, Palazoğlu A (2004) Real-time application of scheduling quasi-min-max model predictive control to a bench-scale neutralization reactor. Ind Eng Chem Res 43:2730–2735

    Article  Google Scholar 

  31. Ławryńczuk M (2008) Suboptimal nonlinear predictive control with MIMO neural Hammerstein models. In: Nguyen NT, Borzemski L, Grzech A, Ali M (eds) Proceedings of the 21th international conference on industrial, engineering & other applications of applied intelligent systems, IEA-AIE 2008, Wrocław, Poland. New frontiers in applied artificial intelligence. Lecture notes in artificial intelligence, vol 5027, pp 225–234

  32. Ławryńczuk M (2007) A family of model predictive control algorithms with artificial neural networks. Int J Appl Math Comput Sci 17:217–232

    Article  MATH  MathSciNet  Google Scholar 

  33. Ławryńczuk M, Marusak P, Tatjewski P (2007) Economic efficacy of multilayer constrained predictive control structures: an application to a MIMO neutralisation reactor. In: Proceedings of the 11th IFAC/IFORS/IMACS/IFIP symposium on large scale systems: theory and applications, Gdańsk, Poland, CD-ROM, paper no 93

  34. Maciejowski JM (2002) Predictive control with constraints. Prentice Hall, Harlow

    Google Scholar 

  35. Marusak P (2009) Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors. Appl Soft Comput 9:1111–1125

    Article  Google Scholar 

  36. Narendra KS, Gallman PG (1966) An iterative method for the identification of the nonlinear systems using the Hammerstein model. IEEE Trans Autom Control 12:546–550

    Article  Google Scholar 

  37. Nešić D, Mareels IMY (1998) Dead-beat control of a simple Hammerstein models. IEEE Trans Autom Control 43:1184–1188

    Article  MATH  Google Scholar 

  38. Nørgaard M, Ravn O, Poulsen NK, Hansen LK (2000) Neural networks for modelling and control of dynamic systems. Springer, London

    Google Scholar 

  39. Patwardhan RS, Lakshminarayanan S, Shah SL (1998) Constrained nonlinear MPC using Hammerstein and Wiener models. AIChE J 44:1611–1622

    Article  Google Scholar 

  40. Piche S, Sayyar-Rodsari B, Johnson D, Gerules M (2000) Nonlinear model predictive control using neural networks. IEEE Control Syst Mag 20:56–62

    Article  Google Scholar 

  41. Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11:733–764

    Article  Google Scholar 

  42. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  43. Rossiter JA (2003) Model-based predictive control. CRC Press, Boca Raton

    Google Scholar 

  44. Scattolini R, Bittanti S (1990) On the choice of the horizon in long-range predictive control—some simple criteria. Automatica 26:915–917

    Article  MATH  Google Scholar 

  45. Smith JG, Kamat S, Madhavan KP (2007) Modeling of pH process using wavenet based Hammerstein model. J Proc Control 17:551–561

    Article  Google Scholar 

  46. Tatjewski P (2007) Advanced control of industrial processes, Structures and algorithms. Springer, London

    MATH  Google Scholar 

  47. Yu DL, Gomm JB (2003) Implementation of neural network predictive control to a multivariable chemical reactor. Control Eng Pract 11:1315–1323

    Article  Google Scholar 

  48. Vörö J (1997) Parameter identification of discontinuous Hammerstein systems. Automatica 33:1141–1146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Ławryńczuk.

Additional information

This work was supported by Polish national budget funds for science for years 2009–2011 in the framework of a research project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ławryńczuk, M. Suboptimal nonlinear predictive control based on multivariable neural Hammerstein models. Appl Intell 32, 173–192 (2010). https://doi.org/10.1007/s10489-010-0211-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-010-0211-x

Keywords

Navigation