Advertisement

Applied Intelligence

, Volume 34, Issue 1, pp 141–154 | Cite as

PC2PSO: personalized e-course composition based on Particle Swarm Optimization

  • Chih-Ping Chu
  • Yi-Chun ChangEmail author
  • Cheng-Chang Tsai
Article

Abstract

This paper proposes a Personalized e-Course Composition approach based on Particle Swarm Optimization (PSO) algorithm, called PC2PSO, to compose appropriate e-learning materials into personalized e-courses for individual learners. The PC2PSO composes a personalized e-course according to (1) whether or not the covered learning concepts of the personalized e-course meets the expected learning target of a learner, (2) whether or not the difficulty of the e-learning material matches a learner’s ability, (3) the limitation of learning time for individual learners, and (4) the balance of the weight of learning concepts that are covered in a personalized e-course. PC2PSO can provide a truly personalized learning environment when used in conjunction with an Intelligent Tutoring System (ITS). When an e-course authoring tool is based on the proposed approach, the PC2PSO can facilitate instructors in selecting appropriate e-learning materials from a mass of candidate e-learning materials, and then saves time and effort in the e-course editing process.

Keywords

E-learning Intelligent Tutoring System (ITS) Particle Swarm Optimization (PSO) Personalized e-course composition Personalized learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen CM, Lee HM, Chen YH (2005) Personalized e-learning system using Item Response Theory. Comput Educ 44(3):237–255 CrossRefGoogle Scholar
  2. 2.
    Shareable Content Object Reference Model (SCORM) Version 1.3, Advanced Distributed Learning (ADL) (2004). [Online]. Available: http://www.adlnet.org/
  3. 3.
    Gomez-Albarran M (2005) The teaching and learning of programming: a survey of supporting software tools. Comput J 48(2):130–144 CrossRefGoogle Scholar
  4. 4.
    IMS (2004) Learning Resource Meta-data Information Model Version 1.2.2, IMS Global Learning Consortium. [Online]. Available: http://www.imsglobal.org/
  5. 5.
    Reload (2004) Reload Tool. [Online]. Available: http://www.reload.ac.uk
  6. 6.
    Yang JTD, Chiu CH, Tsai CY, Wu TH (2004) Visualized online simple sequencing authoring tool for SCORM-compliant content package. In: Proceedings of IEEE international conference on advanced learning technologies, pp 609–613 Google Scholar
  7. 7.
    Su JM, Tseng SS, Chen CY, Weng JF, Tsai WN (2006) Constructing SCORM compliant course based on High-Level Petri Nets. Comput Stand Interfaces 28(3):336–355 CrossRefGoogle Scholar
  8. 8.
    Brusilovsky P (1999) Adaptive and intelligent technologies for Web-based education. Kunstl Intell 13:19–25 Google Scholar
  9. 9.
    Lee MG (2001) Profiling students’ adaptation styles in Web-based learning. Comput Educ 36(2):121–132 CrossRefGoogle Scholar
  10. 10.
    Liu HI, Yang MN (2005) QoL guaranteed adaptation and personalization in E-learning systems. IEEE Trans Educ 48(4):676–687 CrossRefGoogle Scholar
  11. 11.
    Iglesias A, Martínez, P, Aler, R, Fernández, F (2008) Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning. Appl Intell. doi: 10.1007/s10489-008-0115-1 Google Scholar
  12. 12.
    Brusilovsky P, Eklund J, Schwarz E (1998) Web-based education for all: a tool for development adaptive courseware computer networks and ISDN systems, vol 30, pp 291–300 Google Scholar
  13. 13.
    Brusilovsky P, Maybury MT (2002) From adaptive hypermedia to the adaptive web. Commun ACM 45(5):30–33 CrossRefGoogle Scholar
  14. 14.
    Huang MJ, Huang HS, Chen MY (2007) Constructing a personalized e-learning system based on genetic algorithm and case-based reasoning approach. Expert Syst Appl 33(3):551–564 CrossRefGoogle Scholar
  15. 15.
    Luo J, Kong W, Ge L (2008) Implementation of learning path in process control model. Comput J. doi: 10.1093/comjnl/bxn1012 Google Scholar
  16. 16.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948 Google Scholar
  17. 17.
    Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE international conference on systems, man, and cybernetics, vol 5, pp 4104–4108 Google Scholar
  18. 18.
    Goldberg DE (1989) Genetic algorithms in search, optimization & machine learning. Addison-Wesley, Reading zbMATHGoogle Scholar
  19. 19.
    Mitchell M (1996) An introduction to genetic algorithms. Bradford Books. MIT Press, Cambridge Google Scholar
  20. 20.
    Rothlauf F (2006) Representations for genetic and evolutionary algorithms. Springer, New York Google Scholar
  21. 21.
    Hong TP, Wang HS, Lin WY, Lee WY (2002) Evolution of appropriate crossover and mutation operators in a genetic process. Appl Intell 16(1):7–17 zbMATHCrossRefGoogle Scholar
  22. 22.
    Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447 CrossRefGoogle Scholar
  23. 23.
    Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2000) A particle swarm optimization for reactive power and voltagecontrol considering voltage security assessment. IEEE Trans Power Syst 15(4):1232–1239 CrossRefGoogle Scholar
  24. 24.
    Naka S, Genji T, Yura T, Fukuyama Y (2003) A hybrid particle swarm optimization for distribution state estimation. IEEE Trans Power Syst 18(1):60–68 CrossRefGoogle Scholar
  25. 25.
    Yin PY, Yu SS, Wang PP, Wang YT (2006) A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems. Comput Stand Interfaces 28(4):441–450 CrossRefGoogle Scholar
  26. 26.
    Lim A, Lin J, Xiao F (2007) Particle Swarm Optimization and Hill Climbing for the bandwidth minimization problem. Appl Intell 26:175–182 zbMATHCrossRefGoogle Scholar
  27. 27.
    Yin PY, Chang KC, Hwang GJ, Hwang GH, Chan Y (2006) A particle swarm optimization approach to composing serial test sheets for multiple assessment criteria. Educ Technol Soc 9(3):3–15 Google Scholar
  28. 28.
    Huang TC, Huang YM, Cheng SC (2007) Automatic and interactive e-learning auxiliary material generation utilizing particle swarm optimization. Expert Syst Appl 35(4):2113–2122 CrossRefGoogle Scholar
  29. 29.
    De-Marcos L, Pages C, Martinez JJ, Gutierrez JA (2007) Competency-based learning object sequencing using particle swarms. In: Proceedings of 19th IEEE international conference on tools with artificial intelligence 2007 (ICTAI 2007), vol 2, pp 111–116 Google Scholar
  30. 30.
    Cheng SC, Lin YT, Huang YM (2009) Dynamic question generation system for web-based testing using particle swarm optimization. Expert Syst Appl 36(1):616–624 CrossRefGoogle Scholar
  31. 31.
    Chang YC, Chang CP, Chiu CH, Chen YC, Chu CP (2005) Constructing a SCORM-compliant intelligent strategy repository. Lect Notes Comput Sci (LNCS) 3583:157–162 CrossRefGoogle Scholar
  32. 32.
    Baker FB (1992) Item response theory: parameter estimation techniques. Dekker, New York, zbMATHGoogle Scholar
  33. 33.
    Hambleton RK, Swaminathan H, Rogers HJ (1991) Fundamentals of item response theory. Sage, Thousand Oaks Google Scholar
  34. 34.
    Holland JH (1975) Adaptation in natural and artificial system. The University of Michigan Press, Ann Arbor Google Scholar
  35. 35.
    Chang YC, Kao WY, Chu CP, Chiu CH (2009) A learning style classification mechanism for e-learning. Comput Educ. doi: 10.1016/j.compedu.2009.02.008 Google Scholar
  36. 36.
    Moodle (2007) Modular Object-Oriented Dynamic Learning Environment (MOODLE). [Online]. Available: http://moodle.org/

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chih-Ping Chu
    • 1
  • Yi-Chun Chang
    • 1
    Email author
  • Cheng-Chang Tsai
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Cheng-Kung UniversityTainanTaiwan

Personalised recommendations