Skip to main content

Patient Preferences of a Low-Income Hispanic Population for Mental Health Services in Primary Care

Abstract

We used a discrete-choice conjoint experiment to model the mental health services preferences of patients of a federally-qualified health center serving a primarily low-income, Hispanic farmworker population in southwestern Arizona. The two attributes that had the largest influence on patient choices (i.e., received the highest importance scores) were where patients receive these services and the language and cultural awareness of the provider who prescribed their treatment. Simulations indicated that the clinic could substantially improve its patients’ welfare with even a single change. The single most effective change in terms of patient preferences would be to offer behavioral health services onsite.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Allen, L. A., Escobar, J. I., Lehrer, P. M., Gara, M. A., & Woolfolk, R. L. (2002). Psychosocial treatments for multiple unexplained physical symptoms: A review of the literature. Psychosomatic Medicine, 64(6), 939–950.

    PubMed  Google Scholar 

  2. Allenby, G. M, Arora, N., & Ginter, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, 32(2), 152–162.

    Article  Google Scholar 

  3. Allenby, G., Fennell, G., Huber, J., Eagle, T., Gilbride, T., Horsky, D., & Ofek, E. (2005). Adjusting choice models to better predict market behavior. Marketing Letters, 16(3–4), 197–208.

    Article  Google Scholar 

  4. Arcury, T. A., & Quandt, S. A. (2007). Delivery of health services to migrant and seasonal farmworkers. The Annual Review of Public Health, 28, 345–363.

    Article  PubMed  Google Scholar 

  5. Bao, Y., Casalino, L. P., & Pincus, H. A. (2013). Behavioral health and health care reform models: Patient-centered medical home, health home, and accountable care organization. The Journal of Behavioral Health Services & Research, 40(1), 121–132. doi:10.1007/s11414-012-9306-y.

    Article  Google Scholar 

  6. Borowsky, S. J., Rubenstein, L. V., Meredith, L. S., Camp, P., Jackson-Triche, M., & Wells, K. B. (2000). Who is at risk of nondetection of mental health problems in primary care? Journal of General Internal Medicine, 15(6), 381–388.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bridges, J. F. (2003). Stated preference methods in health care evaluation: An emerging methodological paradigm in health economics. Applied Health Economics and Health Policy, 2(4), 213–224.

    PubMed  Google Scholar 

  8. Bridges, J. F. P., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., & Mauskopf, J. (2011). Conjoint analysis applications in health—a checklist: A report of the ISPOR good research practices for conjoint analysis task force. Value in Health, 14(4), 403–413.

    Article  PubMed  Google Scholar 

  9. Bridges, J., Onukwugha, E., Johnson, F. R., & Hauber, A. B. (2007). Patient preference methods—a patient centered evaluation paradigm. ISPOR Connections, 13(6), 4–7.

    Google Scholar 

  10. Caldwell, A., Couture, A., & Nowotny, H. (2008). Closing the mental health gap: Eliminating disparities in treatment for latinos. Kansas City, MO: Mattie Rhodes Center.

    Google Scholar 

  11. Callahan, E. J., Bertakis, K. D., Azari, R., Robbins, J. A., Helms, L. J., & Leigh, J. P. (2002). Association of higher costs with symptoms and diagnosis of depression. Journal of Family Practice, 51(6), 540–545.

    PubMed  Google Scholar 

  12. Caruso, E. M., Rahnev, D. A., & Banaji, M. R. (2009). Using conjoint analysis to detect discrimination: Revealing covert preferences from overt choices. Social Cognition, 27(1), 128–137.

    Article  Google Scholar 

  13. Carvajal, S. C., Rosales, C., Rubio-Goldsmith, R., Sabo, S., Ingram, M., McClelland, D. J., & O’Leary, A. O. (2013). The border community and immigration stress scale: A preliminary examination of a community responsive measure in two southwest samples. Journal of Immigrant and Minority Health, 15(2), 427–436.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coyne, J. C., Thompson, R., Palmer, S. C., Kagee, A., & Maunsell, E. (2000). Should we screen for depression? Caveats and potential pitfalls. Applied and Preventive Psychology, 9(2), 101–121.

    Article  Google Scholar 

  15. Cunningham, C. E., Deal, K., Rimas, H., Campbell, H., Russell, A., Henderson, J., & Melnick, B. (2008). Using conjoint analysis to model the preferences of different patient segments for attributes of patient-centered care. The Patient: Patient-Centered Outcomes Research, 1(4), 317–330.

    Article  Google Scholar 

  16. Cunningham, C. E., Deal, K., Rimas, H., Chen, Y., Buchanan, D. H., & Sdao-Jarvie, K. (2009). Providing information to parents of children with mental health problems: A discrete choice conjoint analysis of professional preferences. Journal of Abnormal Child Psychology, 37(8), 1089–1102.

    Article  PubMed  Google Scholar 

  17. Dickinson, W. Perry., & Miller, B. F. (2010). Comprehensiveness and continuity of care and the inseparability of mental and behavioral health from the patient-centered medical home. Families, Systems, & Health, 28(4), 348–355. doi:10.1037/a0021866.

    Article  Google Scholar 

  18. Dwight-Johnson, M., Lagomasino, I. T., Aisenberg, E., & Hay, J. (2004). Using conjoint analysis to assess depression treatment preferences among low-income Latinos. Psychiatric Services, 55(8), 934–936.

    Article  PubMed  Google Scholar 

  19. Escobar, J. I., Waitzkin, H., Silver, R. C., Gara, M., & Holman, A. (1998). Abridged somatization: A study in primary care. Psychosomatic Medicine, 60(4), 466–472.

    CAS  Article  PubMed  Google Scholar 

  20. Fraenkel, L., Gulanski, B., & Wittink, D. (2006). Patient treatment preferences for osteoporosis. Arthritis Care & Research, 55(5), 729–735.

    Article  Google Scholar 

  21. General, S. (2001). Mental health: Culture, race, ethnicity, supplement to mental health: Report of the surgeon general. Washington, DC: US Department of Health and Human Services.

    Google Scholar 

  22. Hedrick, S. C., Chaney, E. F., Felker, B., Liu, C.-F., Hasenberg, N., Heagerty, P., & Paden, G. (2003). Effectiveness of collaborative care depression treatment in Veterans’ Affairs primary care. Journal of General Internal Medicine, 18(1), 9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hovey, J. D., & Seligman, L. D. (2006). The mental health of agricultural workers. In J. E. Lessenger (Ed.), Agricultural Medicine(pp. 282–299). New York: Springer.

    Chapter  Google Scholar 

  24. Hsee, C. K., Loewenstein, G. F., Blount, S., & Bazerman, M. H. (1999). Preference reversals between joint and separate evaluations of options: A review and theoretical analysis. Psychological Bulletin, 125(5), 576.

    Article  Google Scholar 

  25. Huber, J., Orme, B. K., & Miller, R. (2007). Dealing with product similarity in conjoint simulations. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement: Methods and applications (4th ed., pp. 347–362). New York: Springer.

    Chapter  Google Scholar 

  26. Hui, M. K, & Bateson, J. E. G. (1991). Perceived control and the effects of crowding and consumer choice on the service experience. Journal of Consumer Research, 18(2), 174–184.

    Article  Google Scholar 

  27. Ingram, M., Murrietta, L., Gall, A. J., Herman, P. M., De Zapien, J. G., & Carvajal, S. C. (2015). CHWs as focus group facilitators: A participatory action research method to improve behavioral health services for farmworkers in a primary care setting. Action Research Journal 13(1), 48–64.

    Google Scholar 

  28. Ingram, M., Schachter, K. A., Guernsey de Zapien, J., Herman, P. M., & Carvajal, S. C. (2014). Using participatory methods to enhance patient‐centred mental health care in a federally qualified community health center serving a Mexican American farmworker community. Health Expectations. doi:10.1111/hex.12284.

    PubMed  Google Scholar 

  29. Katon, W. (1995). Will improving detection of depression in primary care lead to improved depressive outcomes? General Hospital Psychiatry, 17(1), 1–2.

    CAS  Article  PubMed  Google Scholar 

  30. Katon, W. J., Roy-Byrne, P., Russo, J., & Cowley, D. (2002). Cost-effectiveness and cost offset of a collaborative care intervention for primary care patients with panic disorder. Archives of General Psychiatry, 59(12), 1098–1104.

    Article  PubMed  Google Scholar 

  31. Kessler, R., & Stafford, D. (2008). Primary care is the de facto mental health system. New York: Springer.

    Book  Google Scholar 

  32. Koizumi, N., Rothbard, A. B., & Kuno, E. (2009). Distance matters in choice of mental health program: Policy implications for reducing racial disparities in public mental health care. Administration and Policy in Mental Health and Mental Health Services Research, 36(6), 424–431.

    Article  PubMed  Google Scholar 

  33. Lancsar, E., & Louviere, J. (2008). Conducting discrete choice experiments to inform healthcare decision making. Pharmacoeconomics, 26(8), 661–677.

    Article  PubMed  Google Scholar 

  34. Lenk, P. J., DeSarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical Bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–191.

    Article  Google Scholar 

  35. Marshall, D., Bridges, J. F., Hauber, B., Cameron, R., Donnalley, L., Fyie, K., & Johnson, F. R. (2010). Conjoint analysis applications in health—how are studies being designed and reported? The Patient: Patient-Centered Outcomes Research, 3(4), 249–256.

    Article  Google Scholar 

  36. Miranda, J., & Cooper, L. A. (2004). Disparities in care for depression among primary care patients. Journal of General Internal Medicine, 19(2), 120–126.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Orme, B. K. (2009). SSI web V6.6 software for web interviewing and conjoint analysis. Sequim: Sawtooth Software.

    Google Scholar 

  38. Orme, B. K. (2010). Getting started with conjoint analysis: Strategies for product design and pricing research (2nd ed.). Madison, WI: Research Publishers.

    Google Scholar 

  39. Orme, B., & Huber, J. (2000). Improving the value of conjoint simulations. Marketing Research, 12(4), 12–20.

    Google Scholar 

  40. Payne, J., Bettman, J., & Johnson, E. (1993). The adaptive decision maker. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  41. Phillips, K. A., Johnson, F. R., & Maddala, T. (2002). Measuring what people value: A comparison of “attitude” and “preference” surveys. Health Services Research, 37(6), 1659–1679.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Raine, R., Haines, A., Sensky, T., Hutchings, A., Larkin, K., & Black, N. (2002). Systematic review of mental health interventions for patients with common somatic symptoms: Can research evidence from secondary care be extrapolated to primary care? BMJ, 325(7372), 1082.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Regier, D. A., Narrow, W. E., Rae, D. S., Manderscheid, R. W., Locke, B. Z., & Goodwin, F. K. (1993). The de facto US mental and addictive disorders service system: Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Archives of General Psychiatry, 50(2), 85–94.

    CAS  Article  PubMed  Google Scholar 

  44. Renzaho, A. M. N., Romios, P., Crock, C., & Sønderlund, A. L. (2013). The effectiveness of cultural competence programs in ethnic minority patient-centered health care—a systematic review of the literature. International Journal for Quality in Health Care, 25(3), 261–269. doi:10.1093/intqhc/mzt006.

    CAS  Article  PubMed  Google Scholar 

  45. Rios-Ellis, B. (2005). Critical disparities in Latino mental health: Transforming research into action. White Paper. Washington, DC: Institute for Hispanic Health, National Council of La Raza.

    Google Scholar 

  46. Rosenthal, E. L., Wiggins, N., Ingram, M., Mayfield-Johnson, S., & De Zapien, J. G. (2011). Community health workers then and now: An overview of national studies aimed at defining the field. Journal of Ambulatory Care Management, 34, 247–259.

    Article  PubMed  Google Scholar 

  47. Rost, K., Pyne, J. M., Dickinson, L. M., & LoSasso, A. T. (2005). Cost-effectiveness of enhancing primary care depression management on an ongoing basis. The Annals of Family Medicine, 3(1), 7–14.

    Article  PubMed  Google Scholar 

  48. Ryan, M., & Farrar, S. (2000). Using conjoint analysis to elicit preferences for health care. British Medical Journal, 320(7248), 1530.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Ryan, M., Scott, D. A., Reeves, C., Bate, A., Van Teijlingen, E. R., Russell, E. M., & Robb, C. M. (2001). Eliciting public preferences for healthcare: A systematic review of techniques. Health Technology Assessment , 5(5), 1–186.

    CAS  Article  PubMed  Google Scholar 

  50. Sawtooth Software, Inc. (2009). The CBC/HB system for hierarchical Bayes estimation version 5.0 technical paper Sawtooth Software Technical Paper Series 131. Sequim, WA.

  51. Sawtooth Software. CBC/Web Tutorial and Example. Retrieved March 10, 2015. http://www.sawtoothsoftware.com/download/techpap/cbcwebtut.pdf.

  52. Scholle, S. H., Haskett, R. F., Hanusa, B. H., Pincus, H. A., & Kupfer, D. J. (2003). Addressing depression in obstetrics/gynecology practice. General Hospital Psychiatry, 25(2), 83–90.

    Article  PubMed  Google Scholar 

  53. Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction framework. Psychological Bulletin, 134(2), 207.

    Article  PubMed  Google Scholar 

  54. Smith, G. R., Rost, K., & Kashner, T. M. (1995). A trial of the effect of a standardized psychiatric consultation on health outcomes and costs in somatizing patients. Archives of General Psychiatry, 52(3), 238–243.

    Article  PubMed  Google Scholar 

  55. Software, S. (2008). The CBC advanced design module technical paper sawtooth software technical paper series 1-31. Sequim, WA: Sawtooth Software Inc.

    Google Scholar 

  56. Sorel, E., & Everett, A. (2011). Psychiatry and primary care integration: Challenges and opportunities. International Review of Psychiatry, 23(1), 28–30. doi:10.3109/09540261.2010.549117.

    Article  PubMed  Google Scholar 

  57. Van Berckelaer, A., DiRocco, D., Ferguson, M., Gray, P., Marcus, N., & Day, S. (2012). Building a patient-centered medical home: Obtaining the patient’s voice. The Journal of the American Board of Family Medicine, 25(2), 192–198. doi:10.3122/jabfm.2012.02.100235.

    Article  PubMed  Google Scholar 

  58. Verlegh, P. W., Schifferstein, H. N., & Wittink, D. R. (2002). Range and number-of-levels effects in derived and stated measures of attribute importance. Marketing Letters, 13(1), 41–52.

    Article  Google Scholar 

  59. Wang, P. S., Demler, O., & Kessler, R. C. (2002). Adequacy of treatment for serious mental illness in the United States. American Journal of Public Health, 92, 92–98.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, P. S., Lane, M., Olfson, M., Pincus, H. A., Wells, K. B., & Kessler, R. C. (2005). Twelve-month use of mental health services in the United States: Results from the national comorbidity survey replication. Archives of General Psychiatry, 62(6), 629–640.

    Article  PubMed  Google Scholar 

  61. Watkins, K., Pincus, H. A., & Tanielian, T. L. (2001). Evidence-based care models for recognizing and treating alcohol problems in primary care. Santa Monica, CA: RAND Corporation.

    Google Scholar 

  62. Williams, J., Palmes, G., Klinepeter, K., Pulley, A., & Foy, J. M. (2005). Referral by pediatricians of children with behavioral health disorders. Clinical Pediatrics, 44(4), 343–349.

    Article  PubMed  Google Scholar 

  63. Wittink, M. N., Cary, M., TenHave, T., Baron, J., & Gallo, J. J. (2010). Towards patient-centered care for depression. The Patient: Patient-Centered Outcomes Research, 3(3), 145–157.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported through a Patient Centered Outcomes Research Institute (PCORI) Pilot Project Program Award (1IP2PI000275-01). Dr. Cunningham’s and Ms. Rimas’s participation was supported by the Jack Laidlaw Chair in Patient-Centered Health Care. The authors would also like to acknowledge the partnership of the Sunset Community Health Center in carrying out this research and the Sunset Community Health Workers who participated in research activities, and recognize research assistant Andrew J. Gall, MPH for his contributions to formative stages of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Herman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herman, P.M., Ingram, M., Rimas, H. et al. Patient Preferences of a Low-Income Hispanic Population for Mental Health Services in Primary Care. Adm Policy Ment Health 43, 740–749 (2016). https://doi.org/10.1007/s10488-015-0687-0

Download citation

Keywords

  • Discrete choice experiment
  • Conjoint analysis
  • Patient preferences
  • Mental health
  • Hispanic