Skip to main content
Log in

Grothendieck’s Vanishing and Non-vanishing Theorems in an Abstract Module Category

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In this article, we prove Grothendieck’s Vanishing and Non-vanishing Theorems of local cohomology objects in the non-commutative algebraic geometry framework of Artin and Zhang. Let k be a field of characteristic zero and \({\mathscr {S}}_{k}\) be a strongly locally noetherian k-linear Grothendieck category. For a commutative noetherian k-algebra R, let \({\mathscr {S}}_R\) denote the category of R-objects in \({\mathscr {S}}_k\) obtained through a non-commutative base change by R of the abelian category \({\mathscr {S}}_{k}\). First, we establish Grothendieck’s Vanishing Theorem for any object \({\mathscr {M}}\) in \({\mathscr {S}}_{R}\). Further, if R is local and \({\mathscr {S}}_{k}\) is Hom-finite, we prove Non-vanishing Theorem for any finitely generated flat object \({\mathscr {M}}\) in \({\mathscr {S}}_R\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Artin, M., Zhang, J.J.: Noncommutative projective schemes. Adv. Math. 109(2), 228–287 (1994)

    Article  MathSciNet  Google Scholar 

  2. Artin, M., Small, L.W., Zhang, J.J.: Generic flatness for strongly Noetherian algebras. J. Algebra 221(2), 579–610 (1999)

    Article  MathSciNet  Google Scholar 

  3. Artin, M., Zhang, J.J.: Abstract Hilbert schemes. Algebras Represent. Theory 4(4), 305–394 (2001)

    Article  MathSciNet  Google Scholar 

  4. Balodi, M., Banerjee, A., Kour, S.: Comodule theories in Grothendieck categories and relative Hopf objects. J. Pure Appl. Algebra 228(6), 107607 (2024)

    Article  MathSciNet  Google Scholar 

  5. Banerjee, A.: An extension of the Beauville–Laszlo descent theorem. Arch. Math. (Basel) 120(6), 595–604 (2023)

    Article  MathSciNet  Google Scholar 

  6. Banerjee, A., Kour, S.: Noncommutative supports, local cohomology and spectral sequences, preprint. arxiv:2205.04000v5

  7. Borceux, F.: Handbook of Categorical Algebra. Encyclopedia of Mathematics and its Applications. Categories and Structures, vol. 51, 2nd edn. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  8. Brodmann, M.P., Sharp, R.Y.: Local Cohomology. Cambridge Studies in Advanced Mathematics, vol. 136, 2nd edn. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  9. Lazard, D.: Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)

    Article  MathSciNet  Google Scholar 

  10. Lowen, W., Van den Bergh, M.: Deformation theory of abelian categories. Trans. Am. Math. Soc. 358(12), 5441–5483 (2006)

    Article  MathSciNet  Google Scholar 

  11. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York-Berlin (1971)

    Google Scholar 

  12. Manin, Y.I.: Quantum Groups and Non Commutative Geometry, Pub. Cent. Rech. Math., Univ. de Montréal (1988)

  13. Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  14. Popescu, N.: Abelian Categories with Applications to Rings and Modules, London Mathematical Society Monographs, vol. 3. Academic Press, London-New York (1973)

    Google Scholar 

  15. Stenström, B.: Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften. An Introduction to Methods of Ring Theory, vol. 217. Springer-Verlag, New York-Heidelberg (1975)

    Google Scholar 

Download references

Funding

Divya Ahuja is financially supported by the Council of Scientific & Industrial Research (CSIR), India [09/086(1430)/2019-EMR-I].

Author information

Authors and Affiliations

Authors

Contributions

All authors participated at all stages in the preparation of the manuscript.

Corresponding author

Correspondence to Divya Ahuja.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest related to this research.

Additional information

Communicated by Marino Gran.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuja, D., Kour, S. Grothendieck’s Vanishing and Non-vanishing Theorems in an Abstract Module Category. Appl Categor Struct 32, 9 (2024). https://doi.org/10.1007/s10485-024-09767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10485-024-09767-y

Keywords

Mathematics Subject Classification

Navigation