Skip to main content

Pseudo-Dualizing Complexes of Bicomodules and Pairs of t-Structures


This paper is a coalgebra version of Positselski (Rendiconti Seminario Matematico Univ. Padova 143: 153–225, 2020) and a sequel to Positselski (Algebras and Represent Theory 21(4):737–767, 2018). We present the definition of a pseudo-dualizing complex of bicomodules over a pair of coassociative coalgebras \({\mathcal {C}}\) and \({\mathcal {D}}\). For any such complex \({\mathcal {L}}^{\scriptstyle \bullet }\), we construct a triangulated category endowed with a pair of (possibly degenerate) t-structures of the derived type, whose hearts are the abelian categories of left \({\mathcal {C}}\)-comodules and left \({\mathcal {D}}\)-contramodules. A weak version of pseudo-derived categories arising out of (co)resolving subcategories in abelian/exact categories with enough homotopy adjusted complexes is also considered. Quasi-finiteness conditions for coalgebras, comodules, and contramodules are discussed as a preliminary material.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alonso Tarrío, L., Jeremías López, A., Souto Salorio, M.J.: Localization in categories of complexes and unbounded resolutions. Can. J. Math. 5(2), 225–247 (2000)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Christensen, L.W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353, 1839–1883 (2001)

    MathSciNet  Article  Google Scholar 

  3. 3.

    L. W. Christensen, A. Frankild, H. Holm. On Gorenstein projective, injective, and flat dimensions—A functorial description with applications. J. Algebra 302, #1, p. 231–279, 2006. arXiv:math.AC/0403156

  4. 4.

    Deligne, P.: Cohomologie à supports propres. SGA4, Tome 3 Lecture Notes in Math. Springer-Verlag, Berlin (1973)

    Google Scholar 

  5. 5.

    M. A. Farinati. On the derived invariance of cohomology theories for coalgebras. Algebras Represent. Theory 6, #3, p. 303–331, 2003. arXiv:math/0006060 [math.KT]

  6. 6.

    Frankild, A., Jørgensen, P.: Foxby equivalence, complete modules, and torsion modules. J. Pure Appl. Algebra 174, 135–147 (2002)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Springer-Verlag, Berlin-Heidelberg-New York (1967)

    Book  Google Scholar 

  8. 8.

    García Rozas, J.R., López Ramos, J.A., Torrecillas, B.: Semidualizing and tilting adjoint pairs, applications to comodules. Bull. Malays. Math. Sci. Soc. 38, 197–218 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gillespie, J.: Kaplansky classes and derived categories. Math. Z. 257, 811–843 (2007)

    MathSciNet  Article  Google Scholar 

  10. 10.

    J. Gómez-Torrecillas, C. Năstăsescu, B. Torrecillas. Localization in coalgebras. Applications to finiteness conditions. J. Algebra Appl. 6, #2, p. 233–243, 2007. arXiv:math.RA/0403248

  11. 11.

    R. Hartshorne. Residues and duality. With an appendix by P. Deligne. Lecture Notes in Math., 20. Springer-Verlag, Berlin–Heidelberg–New York, 1966

  12. 12.

    H. Holm, D. White. Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47, #4, p. 781–808, 2007. arXiv:math.AC/0611838

  13. 13.

    Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Miyachi, J.: Derived categories and Morita duality theory. J. Pure Appl. Algebra 128, 153–170 (1998)

    MathSciNet  Article  Google Scholar 

  15. 15.

    L. Positselski. Homological algebra of semimodules and semicontramodules: Semi-infinite homological algebra of associative algebraic structures. Appendix C in collaboration with D. Rumynin; Appendix D in collaboration with S. Arkhipov. Monografie Matematyczne vol. 70, Birkhäuser/Springer Basel, 2010. xxiv+349 pp. arXiv:0708.3398 [math.CT]

  16. 16.

    L. Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Mem. Amer. Math. Soc. 212, #996, 2011. vi+133 pp. arXiv:0905.2621 [math.CT]

  17. 17.

    L. Positselski. Contraherent cosheaves. Electronic preprint arXiv:1209.2995 [math.CT]

  18. 18.

    L. Positselski. Contramodules. Electronic preprint arXiv:1503.00991 [math.CT]

  19. 19.

    L. Positselski. Dedualizing complexes and MGM duality. J. Pure Appl. Algebra 220, #12, p. 3866–3909, 2016. arXiv:1503.05523 [math.CT]

  20. 20.

    L. Positselski. Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–Grothendieck duality. Sel. Math. (New Ser.) 23, #2, p. 1279–1307, 2017. arXiv:1504.00700 [math.CT]

  21. 21.

    L. Positselski. Dedualizing complexes of bicomodules and MGM duality over coalgebras. Algebras Represent. Theory. 21, #4, p. 737–767, 2018. arXiv:1607.03066 [math.CT]

  22. 22.

    L. Positselski. Smooth duality and co-contra correspondence. J. Lie Theory 30, #1, p. 85–144, 2020. arXiv:1609.04597 [math.CT]

  23. 23.

    L. Positselski. Pseudo-dualizing complexes and pseudo-derived categories. Rend. Semin. Mat. Univ. Padova 143, p. 153–225, 2020. arXiv:1703.04266 [math.CT]

  24. 24.

    L. Positselski. Contramodules over pro-perfect topological rings. Electronic preprint arXiv:1807.10671 [math.CT]

  25. 25.

    L. Positselski, J. Št’ovíček. \(\infty \)-tilting theory. Pacific J. Math. 301, #1, p. 297–334, 2019. arXiv:1711.06169 [math.CT]

  26. 26.

    L. Positselski, J. Št’ovíček. Derived, coderived, and contraderived categories of locally presentable abelian categories. J. Pure Appl. Algebra 226, 106883 (2022). arXiv:2101.10797 [math.CT]

  27. 27.

    Serpé, C.: Resolution of unbounded complexes in Grothendieck categories. J. Pure Appl. Algebra 177, 103–112 (2003)

    MathSciNet  Article  Google Scholar 

  28. 28.

    J. Št’ovíček. Derived equivalences induced by big cotilting modules. Adv. Math. 263, p. 45–87, 2014. arXiv:1308.1804 [math.CT]

  29. 29.

    M. E. Sweedler. Hopf algebras. Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969

  30. 30.

    Takeuchi, M.: Morita theorems for categories of comodules. J. Faculty Sci. Univ. Tokyo Sect. 1 A, Math. 24, 629–644 (1977)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Wang, M., Wu, Z.: Conoetherian coalgebras. Algebra Colloq. 5, 117–120 (1998)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Yekutieli, A.: Dualizing complexes over noncommutative graded algebras. J. Algebra 153, 41–84 (1992)

    MathSciNet  Article  Google Scholar 

  33. 33.

    A. Yekutieli, J. J. Zhang. Rings with Auslander dualizing complexes. J. Algebra 213, #1, p. 1–51, 1999. arXiv:math.RA/9804005

Download references


I am grateful to Jan Št’ovíček for helpful discussions. The author’s research is supported by the GAČR project 20-13778S and research plan RVO: 67985840.

Author information



Corresponding author

Correspondence to Leonid Positselski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Vladimir Hinich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Positselski, L. Pseudo-Dualizing Complexes of Bicomodules and Pairs of t-Structures. Appl Categor Struct (2021).

Download citation


  • Comodules and contramodules
  • Derived, coderived, and contraderived categories
  • Pseudo-derived categories and pseudo-derived equivalences
  • Dualizing, dedualizing, and pseudo-dualizing complexes
  • t-structures of the derived type