Skip to main content
Log in

Coring Categories and Villamayor–Zelinsky Sequence for Symmetric Finite Tensor Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In the preceeding paper we constructed an infinite exact sequence a la Villamayor–Zelinsky for a symmetric finite tensor category. It consists of cohomology groups evaluated at three types of coefficients which repeat periodically. In the present paper we interpret the middle cohomology group in the second level of the sequence. We introduce the notion of coring categories and we obtain that the mentioned middle cohomology group is isomorphic to the relative group of Azumaya quasi coring categories. This result is a categorical generalization of the classical Crossed Product Theorem, which relates the relative Brauer group and the second Galois cohomology group with respect to a Galois field extension. We construct the colimit over symmetric finite tensor categories of the relative groups of Azumaya quasi coring categories and the full group of Azumaya quasi coring categories over vec. We prove that the latter two groups are isomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruskiewitsch, N., Etingof, P., Gelaki, S.: Triangular Hopf algebras with the Chevalley property. Mich. Math. J. 49, 277–298 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bruguières, A.: Catégories prémodulaires, modularisations et invariants desvariétés de dimension 3. Math. Ann. 316, 215–236 (2000)

    Article  MathSciNet  Google Scholar 

  3. Brzeziński, T.: The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Algebr. Represent. Theory 5, 389–410 (2002)

  4. Caenepeel, S., Femić, B.: The Brauer group of Azumaya corings and the second cohomology group. K-Theory 34, 361–393 (2005)

    Article  MathSciNet  Google Scholar 

  5. Crane, L., Yetter, D.: Deformations of (Bi) tensor Categories. Cahiers Topologie Géom. Différentielle Catég 39(3), 163–180 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Sel. Math. New Ser. 16(1), 1–119 (2010)

    Article  MathSciNet  Google Scholar 

  7. Davydov, A., Nikshych, D.: The Picard crossed module of a braided tensor category. Algebra Number Theory 7(6), 1365–1403 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dello, J., Zhang, Y.: Braided autoequivalences and the equivariant Brauer group of a quasi-triangular Hopf algebra. J. Algebra 445(1), 244–279 (2016)

    Article  MathSciNet  Google Scholar 

  9. Etingof, P., Gelaki, S.: The classification of finite-dimensional triangular Hopf algebras over an algebraically closed field of characteristic 0. Mosc. Math. J. 3(1), 37–43 (2003)

    Article  MathSciNet  Google Scholar 

  10. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Lecture notes for MIT 18.769, 2009. http://www-math.mit.edu/~etingof/tenscat1.pdf (2009)

  11. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs, vol. 205. AMS, Providence (2015)

    Book  Google Scholar 

  12. Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010)

    Article  MathSciNet  Google Scholar 

  13. Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654 (2004)

    Article  MathSciNet  Google Scholar 

  14. Femić, B.: Villamayor–Zelinsky sequence for symmetric finite tensor categories. Appl. Categ. Struct. 25(6), 1199–1228 (2017). https://doi.org/10.1007/s10485-017-9492-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Femić, B.: Villamayor–Zelinsky sequence for symmetric finite tensor categories. Updated preprint arXiv:1505.06504 [math.QA]

  16. Femić, B.: Eilenberg–Watts theorem for 2-categories and quasi-monoidal structures for module categories over bialgebroid categories, accepted by. J. Pure Appl. Algebra 220(9), 3156–3181 (2016). https://doi.org/10.1016/j.jpaa.2016.02.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543–575 (2013)

    Article  MathSciNet  Google Scholar 

  18. Greenough, J.: Monoidal 2-structure of bimodule categories. J. Algebra 324, 1818–1859 (2010)

    Article  MathSciNet  Google Scholar 

  19. Greenough, J.: Relative centers and tensor products of tensor and braided fusion categories. J. Algebra 388, 374–396 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kitaev, A., Kong, L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012)

    Article  MathSciNet  Google Scholar 

  21. Knus, M.A., Ojanguren, M.: Théorie de la descente et algèbres d’Azumaya. Lecture Notes in Mathematics, vol. 389. Springer, Berlin (1974)

    Book  Google Scholar 

  22. Mombelli, M.: Una introducción a las categorías tensoriales y sus representaciones. http://www.famaf.unc.edu.ar/~mombelli/categorias-tensoriales3.pdf

  23. Müger, M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87(3), 291–308 (2003)

    Article  MathSciNet  Google Scholar 

  24. Neuchl, M.: Representation theory of Hopf categories, PhD thesis

  25. Sweedler, M.E.: The predual theorem to the Jacobson–Bourbaki theorem. Trans. Am. Math. Soc. 213, 391–406 (1975)

    Article  MathSciNet  Google Scholar 

  26. Van Oystaeyen, F., Zhang, Y.H.: The Brauer group of a braided monoidal category. J. Algebra 202, 96–128 (1998)

    Article  MathSciNet  Google Scholar 

  27. Villamayor, O.E., Zelinsky, D.: Brauer groups and Amitsur cohomology for general commutative ring extensions. J. Pure Appl. Algebra 10, 19–55 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was developed while the author worked at Facultad de Ingeniería, Universidad de la República in Montevideo, Uruguay. Author thanks to PEDECIBA and ANII in Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Femić.

Additional information

Communicated by Stephen Lack.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Femić, B. Coring Categories and Villamayor–Zelinsky Sequence for Symmetric Finite Tensor Categories. Appl Categor Struct 29, 485–527 (2021). https://doi.org/10.1007/s10485-020-09624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-020-09624-8

Keywords

Mathematics Subject Classification

Navigation