Skip to main content

A Categorical Approach to Linkage

Abstract

Linkage of ideals is a very well-studied topic in algebra. It has lead to the development of module linkage which looks to extend the ideas and results of the former. Although linkage has been used extensively to find many interesting and impactful results, it has only been extended to schemes and modules. This paper builds a framework in which to perform linkage from a categorical perspective. This allows a generalization of many theories of linkage including complete intersection ideal linkage, Gorenstein ideal linkage, linkage of schemes and module linkage. Moreover, this construction brings together many different robust fields of homological algebra including linkage, homological dimensions, and duality. After defining linkage and showing results concerning linkage directly, we explore the connection between linkage, homological dimensions, and duality. Applications of this new framework are sprinkled throughout the paper investigating topics including module linkage, horizontal linkage, module theoretic invariants, and Auslander and Bass classes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Auslander, M., Bridger, M.: Stable Module Theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, (1969)

  2. 2.

    Avramov, L.L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. 75(2), 241–270 (1997). https://doi.org/10.1112/S0024611597000348

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, Vol. 566 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (2004). https://doi.org/10.1007/978-1-4020-1962-3

    Book  MATH  Google Scholar 

  4. 4.

    Brennan, J. P., York, A.: Linkage and Intermediate C-Gorenstein Dimensions, unpublished

  5. 5.

    Brennan, J.P., York, A.: An extension of a theorem of Frobenius and Stickelberger to modules of projective dimension one over a factorial domain. J. Pure Appl. Algebra 223(2), 626–633 (2019). https://doi.org/10.1016/j.jpaa.2018.04.011

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Christensen, L. W.: Gorenstein dimensions, Vol. 1747 of Lecture Notes in Mathematics, Springer, Berlin, (2000) https://doi.org/10.1007/BFb0103980

  7. 7.

    Christensen, L.W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms. J. Pure Appl. Algebra 208(1), 177–188 (2007). https://doi.org/10.1016/j.jpaa.2005.12.005

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Cuong, N.T., Nam, T.T.: The \(I\)-adic completion and local homology for Artinian modules. Math. Proc. Camb. Philos. Soc. 131(1), 61–72 (2001). https://doi.org/10.1017/S0305004100004771

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Dibaei, M.T., Sadeghi, A.: Linkage of modules and the Serre conditions. J. Pure Appl. Algebra 219(10), 4458–4478 (2015). https://doi.org/10.1016/j.jpaa.2015.02.027

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Dibaei, M.T., Sadeghi, A.: Linkage of modules with respect to a semidualizing module. Pacific J. Math. 294(2), 307–328 (2018). https://doi.org/10.2140/pjm.2018.294.307

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and flat dimensions. Math. Japon. 44(2), 261–268 (1996)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31(1972), 267–284 (1973). https://doi.org/10.7146/math.scand.a-11434

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    García-Rozas, J.R., López, I., Oyonarte, L.: Relative attached primes and coregular sequences. Taiwan. J. Math. 17(3), 1095–1114 (2013). https://doi.org/10.11650/tjm.17.2013.3055

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Golod, E. S.: \(G\)-dimension and generalized perfect ideals. Trudy Mat. Inst. Steklov. 165, 62–66, algebraic geometry and its applications. (1984)

  15. 15.

    Hartshorne, R.: Liaison with Cohen–Macaulay modules. Rend. Semin. Mat. Univ. Politec. Torino 64(4), 419–432 (2006)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commun. Algebra 1(4), 621–633 (2009). https://doi.org/10.1216/JCA-2009-1-4-621

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47(4), 781–808 (2007). https://doi.org/10.1215/kjm/1250692289

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Huneke, C., Ulrich, B.: The structure of linkage. Ann. Math. 126(2), 277–334 (1987). https://doi.org/10.2307/1971402

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Huneke, C., Ulrich, B.: Algebraic linkage. Duke Math. J. 56(3), 415–429 (1988). https://doi.org/10.1215/S0012-7094-88-05618-9

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Huneke, C., Ulrich, B.: Local properties of licci ideals. Math. Z. 211(1), 129–154 (1992). https://doi.org/10.1007/BF02571423

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Kustin, A.R., Miller, M., Ulrich, B.: Linkage theory for algebras with pure resolutions. J. Algebra 102(1), 199–228 (1986). https://doi.org/10.1016/0021-8693(86)90137-7

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Martin, H.M.: Linkage and the generic homology of modules. Commun. Algebra 28(9), 4285–4301 (2000). https://doi.org/10.1080/00927870008827090

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Martsinkovsky, A., Strooker, J.R.: Linkage of modules. J. Algebra 271(2), 587–626 (2004). https://doi.org/10.1016/j.jalgebra.2003.07.020

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Migliore, J.C.: Introduction to Liaison Theory and Deficiency Modules. Progress in Mathematics, vol. 165. Birkhäuser Boston Inc, Boston, MA (1998). https://doi.org/10.1007/978-1-4612-1794-7

    Book  MATH  Google Scholar 

  25. 25.

    Nagel, U.: Liaison classes of modules. J. Algebra 284(1), 236–272 (2005). https://doi.org/10.1016/j.jalgebra.2004.09.022

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Nagel, U., Sturgeon, S.: Combinatorial interpretations of some Boij–Söderberg decompositions. J. Algebra 381, 54–72 (2013). https://doi.org/10.1016/j.jalgebra.2013.01.027

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Ooishi, A.: Matlis duality and the width of a module, Hiroshima Math. J. 6(3), 573–587 (1976) http://projecteuclid.org/euclid.hmj/1206136213

  28. 28.

    Peskine, C., Szpiro, L.: Liaison des variétés algébriques. I. Invent. Math. 26, 271–302 (1974). https://doi.org/10.1007/BF01425554

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Polini, C., Ulrich, B.: Linkage and reduction numbers. Math. Ann. 310(4), 631–651 (1998). https://doi.org/10.1007/s002080050163

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Schenzel, P.: Notes on liaison and duality. J. Math. Kyoto Univ. 22(3), 485–498 (1982/83) https://doi.org/10.1215/kjm/1250521732

  31. 31.

    Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose. Forum Math. 27(6), 3717–3743 (2015). https://doi.org/10.1515/forum-2013-0196

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose, II. Kyoto J. Math. 57(1), 17–53 (2017). https://doi.org/10.1215/21562261-3759504

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Ulrich, B.: On licci ideals, in: Invariant theory (Denton, TX, 1986), Vol. 88 of Contemp. Math. Am. Math. Soc. Providence, RI, 1989, pp. 85–94 https://doi.org/10.1090/conm/088/999984

  34. 34.

    Yoshino, Y., Isogawa, S.: Linkage of Cohen–Macaulay modules over a Gorenstein ring. J. Pure Appl. Algebra 149(3), 305–318 (2000). https://doi.org/10.1016/S0022-4049(98)00167-4

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander York.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Henning Krause.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

York, A. A Categorical Approach to Linkage. Appl Categor Struct 29, 447–483 (2021). https://doi.org/10.1007/s10485-020-09623-9

Download citation

Keywords

  • Ideal linkage
  • Module linkage
  • Category theory
  • Homological dimensions
  • Duality

Mathematics Subject Classification

  • Primary: 13C40
  • 18G20
  • Secondary: 13D02
  • 18G25
  • 18G10