Skip to main content
Log in

A Topological Groupoid Representing the Topos of Presheaves on a Monoid

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript


Butz and Moerdijk famously showed that every (Grothendieck) topos with enough points is equivalent to the category of sheaves on some topological groupoid. We give an alternative, more algebraic construction in the special case of a topos of presheaves on an arbitrary monoid. If the monoid is embeddable in a group, the resulting topological groupoid is the action groupoid for a discrete group acting on a topological space. For these monoids, we show how to compute the points of the associated topos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Butz, C., Moerdijk, I.: Representing topoi by topological groupoids. J. Pure Appl. Algebra 130(3), 223–235 (1998)

    Article  MathSciNet  Google Scholar 

  2. Connes, A., Consani, C.: The arithmetic site. R. Math. Acad. Sci. Paris 352(12), 971–975 (2014)

    Article  MathSciNet  Google Scholar 

  3. Deitmar, A.: Schemes over \({\mathbb{F}}_1\), number fields and function fields—two parallel worlds, pp. 87–100. Birkhäuser Boston, Boston (2005)

    Google Scholar 

  4. Funk, J., Hofstra, P.: Topos theoretic aspects of semigroup actions. Theory Appl. Categ. 24(6), 117–147 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Hemelaer, J.: An arithmetic topos for integer matrices. J. Number Theory 204, 155–184 (2019)

    Article  MathSciNet  Google Scholar 

  6. Johnstone, P.T.: Factorization theorems for geometric morphisms. I. Cahiers Topologie Géom. Différentielle 22(1), 3–17 (1981). Third Colloquium on Categories (Amiens, 1980), Part II

  7. Johnstone, P.T.: Sketches of an elephant: a topos theory compendium, vol. 1. Oxford Logic Guides, vol. 43. The Clarendon Press, New York (2002)

    Google Scholar 

  8. Johnstone, P.T.: Sketches of an elephant: a topos theory compendium, vol. 2. Oxford Logic Guides, vol. 44, p. 2063092. The Clarendon Press, Oxford (2002)

    Google Scholar 

  9. Kurokawa, N., Ochiai, H., Wakayama, M.: Absolute derivations and zeta functions. Doc. Math. no. (Extra) Vol., 565–584 (2003). Kazuya kato’s fiftieth birthday

  10. Loregian, F., Riehl, E.: Categorical notions of fibration, preprint (2019). arXiv:1806.06129v2

  11. Mal’cev, A.I.: On the immersion of an algebraic ring into a field. Math. Ann. 113(1), 686–691 (1937)

    Article  MathSciNet  Google Scholar 

  12. Manin, Y.: Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque, 228(4), 121–163 (1995) Columbia University Number Theory Seminar , New York (1992)

  13. Pirashvili, I.: Topos points of quasi-coherent sheaves over monoid schemes. In: Mathematical Proceedings of the Cambridge Philosophical Society (2019). arXiv:1611.02211

  14. Rogers, M.: Toposes of Discrete Monoid Actions, preprint (2019). arXiv:1905.10277

  15. Théorie des topos et cohomologie étale des schémas: Tome 1: Théorie des topos. In: Lecture Notes in Mathematics, vol. 269. Springer, Berlin (1972)

  16. Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes, Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre: Centre Belge de Recherches Mathématiques, Établissements Ceuterick. Louvain; Librairie Gauthier-Villars, Paris 1957, 261–289 (1956)

  17. Toën, B., Vaquié, M.: Au-dessous de \({\rm Spec}\,\mathbb{Z}\). J. K-Theory 3(3), 437–500 (2009)

    Article  MathSciNet  Google Scholar 

  18. Vezzani, A.: Deitmar’s versus Toën–Vaquié’s schemes over \(\mathbb{F}_1\). Math. Z. 271(3–4), 911–926 (2012)

    Article  MathSciNet  Google Scholar 

Download references


I would like to thank Karin Cvetko-Vah and Lieven Le Bruyn for the interesting discussions regarding the interpretation of étale spaces (over an Alexandrov-discrete space) in terms of posets. Further, I would like to thank the anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jens Hemelaer.

Additional information

Communicated by Matías Menni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is a Ph.D. fellow of the Research Foundation—Flanders (FWO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemelaer, J. A Topological Groupoid Representing the Topos of Presheaves on a Monoid. Appl Categor Struct 28, 749–772 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: