Advertisement

The Universal Property of Infinite Direct Sums in \(\hbox {C}^*\)-Categories and \(\hbox {W}^*\)-Categories

  • Tobias FritzEmail author
  • Bas Westerbaan
Article
  • 3 Downloads

Abstract

When formulating universal properties for objects in a dagger category, one usually expects a universal property to characterize the universal object up to unique unitary isomorphism. We observe that this is automatically the case in the important special case of \(\hbox {C}^*\)-categories, provided that one uses enrichment in Banach spaces. We then formulate such a universal property for infinite direct sums in \(\hbox {C}^*\)-categories, and prove the equivalence with the existing definition due to Ghez, Lima and Roberts in the case of \(\hbox {W}^*\)-categories. These infinite direct sums specialize to the usual ones in the category of Hilbert spaces, and more generally in any \(\hbox {W}^*\)-category of normal representations of a \(\hbox {W}^*\)-algebra. Finding a universal property for the more general case of direct integrals remains an open problem.

Keywords

Direct sum Biproduct \(\hbox {C}^*\)-category \(\hbox {W}^*\)-category Category of Hilbert spaces 

Mathematics Subject Classification

Primary: 46M15 Secondary: 18E05 46L10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Robert Furber for copious help and discussion, as well as Chris Heunen and Martti Karvonen for discussion. Part of this work was conducted while the first author was at the Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany.

References

  1. 1.
    Borceux, F.: Handbook of Categorical Algebra. 2. Categories and Structures. Encyclopedia of Mathematics and its Applications, vol. 51. Cambridge University Press, Cambridge (1994) CrossRefGoogle Scholar
  2. 2.
    Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions: Applications of Harmonic Analysis, vol. 4. Academic Press, New York (1964). (Translated by Amiel Feinstein)zbMATHGoogle Scholar
  3. 3.
    Ghez, P., Lima, R., Roberts, J.E.: \(\text{ W }^*\)-categories. Pac. J. Math. 120, 79–109 (1985)CrossRefGoogle Scholar
  4. 4.
    Heunen, C., Karvonen, M.: Limits in dagger categories. Theory Appl. Categ. 34(18), 468–513 (2019). arXiv:1803.06651 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. 2. American Mathematical Society, Providence (1997)zbMATHGoogle Scholar
  6. 6.
    Kelly, G.M.: Basic Concepts of Enriched Category Theory. Reprints in Theory and Applications of Categories, vol. 10. Cambridge University Press, Cambridge (2005). (Reprint of the 1982 original)Google Scholar
  7. 7.
    Paschke, W.L.: Inner product modules over b*-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Rieffel, M.A.: Morita equivalence for C*-algebras and W*-algebras. Journal of Pure and Applied Algebra 5(1), 51–96 (1974)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sakai, S.: \(C^*\)-Algebras and \(W^*\)-Algebras. Classics in Mathematics. Springer, Berlin (1998). Reprint of the 1971 editionzbMATHGoogle Scholar
  10. 10.
    Westerbaan, A.: The Category of Von Neumann Algebras. PhD thesis, Radboud University (2019). arXiv:1804.02203
  11. 11.
    Westerbaan, A., Westerbaan, B.: A universal property for sequential measurement. J Math Phys 57(9), 092203 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Westerbaan, B.: Dagger and dilations in the category of von Neumann algebras. PhD thesis, Radboud University (2019). arXiv:1803.01911

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations