Advertisement

On Integral Structure Types

  • James FullwoodEmail author
Article
  • 3 Downloads

Abstract

We introduce integral structure types as a categorical analogue of virtual combinatorial species. Integral structure types then categorify power series with possibly negative coefficients in the same way that combinatorial species categorify power series with non-negative rational coefficients. The notion of an operator on combinatorial species naturally extends to integral structure types, and in light of their ‘negativity’ we define the notion of the commutator of two operators on integral structure types. We then extend integral structure types to the setting of stuff types as introduced by Baez and Dolan, and then conclude by using integral structure types to give a combinatorial description for Chern classes of projective hypersurfaces.

Keywords

Combinatorial species Chern classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Baez, J.C., Dolan, J.: From finite sets to Feynman diagrams. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited–2001 and Beyond, pp. 29–50. Springer, Berlin (2001)Google Scholar
  2. 2.
    Bergeron, F., Labelle, G., Leroux, P.: Combinatorial species and tree-like structures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1998). Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo RotaGoogle Scholar
  3. 3.
    Fulton, W.: Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2nd edn. Springer, Berlin (1998)Google Scholar
  4. 4.
    Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42(1), 1–82 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Joyal, A.: Règle des signes en algèbre combinatoire. C. R. Math. Rep. Acad. Sci. Canada 7(5), 285–290 (1985)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Morton, J.: Categorified algebra and quantum mechanics. Theory Appl. Categ. 16(29), 785–854 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Teitler, Z.: An informal introduction to computing with Chern classes in algebraic geometry. Author’s VIGRE project. https://math.boisestate.edu/~zteitler/math/expository/chern.pdf
  8. 8.
    Yeh, Y.N.: The calculus of virtual species and K-species. In: Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985), volume 1234 of Lecture Notes in Mathematics, pp. 351–369. Springer, Berlin (1986)Google Scholar
  9. 9.
    Yorgey, B.A.: Combinatorial species and labelled structures. ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.), University of PennsylvaniaGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations