Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In: International Conference on Typed Lambda Calculi and Applications, pp. 78–93. Springer (1995)
Blute, R.F., Cockett, J.R.B., Porter, T., Seely, R.A.G.: Kähler categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 52(4), 253–268 (2011)
MathSciNet
MATH
Google Scholar
Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Math. Struct. Comput. Sci. 16(06), 1049–1083 (2006)
MathSciNet
Article
Google Scholar
Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential categories. Theory Appl. Categ. 22(23), 622–672 (2009)
MathSciNet
MATH
Google Scholar
Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential storage categories. Theory Appl. Categ. 30(18), 620–686 (2015)
MathSciNet
MATH
Google Scholar
Blute, R.F., Ehrhard, T., Tasson, C.: A convenient differential category. Cahiers de Top. et Géom Diff LIII, 211–232 (2012)
MathSciNet
MATH
Google Scholar
Blute, R.F., Lucyshyn-Wright, R.B.B., O’Neill, K.: Derivations in codifferential categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 57, 243–280 (2016)
MathSciNet
MATH
Google Scholar
Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci. 309(1), 1–41 (2003)
MathSciNet
Article
Google Scholar
Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2), 166–195 (2006)
MathSciNet
Article
Google Scholar
Fiore, M.P.: Differential structure in models of multiplicative biadditive intuitionistic linear logic. In: International Conference on Typed Lambda Calculi and Applications, pp. 163–177. Springer (2007)
Guo, L.: An Introduction to Rota–Baxter Algebra, vol. 2. International Press Somerville, Somerville (2012)
MATH
Google Scholar
Guo, L., Keigher, W.: On differential Rota–Baxter algebras. J. Pure Appl. Algebra 212(3), 522–540 (2008)
MathSciNet
Article
Google Scholar
Joyal, A., Street, R.: The geometry of tensor calculus, i. Adv. Math. 88(1), 55–112 (1991)
MathSciNet
Article
Google Scholar
Lang, S.: Algebra, revised 3rd ed. In: Graduate Texts in Mathematics, vol. 211 (2002)
Chapter
Google Scholar
Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971, revised 2013)
Melliès, P.A.: Categorical models of linear logic revisited. https://hal.archives-ouvertes.fr/hal-00154229. Working paper or preprint (2003)
Schalk, A.: What is a categorical model of linear logic? Manuscript. http://www.cs.man.ac.uk/~schalk/notes/llmodel.pdf (2004)
Seely, R.A.G.: Linear Logic,*-Autonomous Categories and Cofree Coalgebras, vol. 92. American Mathematical Society, Providence (1989)
MATH
Google Scholar
Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, pp. 289–355. Springer (2010)
Zhang, S., Guo, L., Keigher, W.: Monads and distributive laws for rota-baxter and differential algebras. Adv. Appl. Math. 72, 139–165 (2016)
MathSciNet
Article
Google Scholar