Abstract
We introduce a new type of categorical object called a hom–tensor category and show that it provides the appropriate setting for modules over an arbitrary hom-bialgebra. Next we introduce the notion of hom-braided category and show that this is the right setting for modules over quasitriangular hom-bialgebras. We also show how the Hom–Yang–Baxter equation fits into this framework and how the category of Yetter–Drinfeld modules over a hom-bialgebra with bijective structure map can be organized as a hom-braided category. Finally we prove that, under certain conditions, one can obtain a tensor category (respectively a braided tensor category) from a hom–tensor category (respectively a hom-braided category).
Similar content being viewed by others
References
Aizawa, N., Sato, H.: \(q\)-deformation of the Virasoro algebra with central extension. Phys. Lett. B 256, 185–190 (1991)
Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)
Bénabou, J.: Catégories avec multiplication. C. R. Acad. Sci. Paris Ser. I Math. 256, 1887–1890 (1963)
Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76, 38–60 (2014)
Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf algebras. Commun. Algebra 39, 2216–2240 (2011)
Chaichian, M., Kulish, P., Lukierski, J.: \(q\)-deformed Jacobi identity, \(q\)-oscillators and \(q\)-deformed infinite-dimensional algebras. Phys. Lett. B 237, 401–406 (1990)
Chen, Y., Wang, Z., Zhang, L.: Integrals for monoidal Hom-Hopf algebras and their applications. J. Math. Phys. 54, 073515 (2013)
Curtright, T.L., Zachos, C.K.: Deforming maps for quantum algebras. Phys. Lett. B 243, 237–244 (1990)
Daskaloyannis, C.: Generalized deformed Virasoro algebras. Modern Phys. Lett. A 7, 809–816 (1992)
Guo, L., Zheng, S.: Free involutive Hom-semigroups and Hom-associative algebras. Front. Math. China 11, 497–508 (2016)
Hartwig, J.T., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using \(\sigma \)-derivations. J. Algebra 295, 314–361 (2006)
Hassanzadeh, M., Shapiro, I., Sütlü, S.: Cyclic homology for Hom-associative algebras. J. Geom. Phys. 98, 40–56 (2015)
Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
Kassel, C.: Cyclic homology of differential operators, the Virasoro algebra and a \(q\)-analogue. Commun. Math. Phys. 146, 343–356 (1992)
Kassel, C.: Quantum Groups, Graduate Texts in Mathematics 155. Springer, New York (1995)
Larsson, D., Silvestrov, S.: Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 288, 321–344 (2005)
Liu, L., Shen, B.: Radford’s biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras. J. Math. Phys. 55, 031701 (2016)
Makhlouf, A., Panaite, F.: Yetter-Drinfeld modules for Hom-bialgebras. J. Math. Phys. 55, 013501 (2014)
Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2, 51–64 (2008)
Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.) Generalized Lie theory in Mathematics, Physics and Beyond, pp. 189–206. Springer, Berlin (2008)
Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras. J. Algebra Appl. 9, 553–589 (2010)
Sheng, Y.: Representations of Hom-Lie algebras. Algebr. Represent. Theory 6, 1081–1098 (2012)
Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter, Berlin (1994)
Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)
Yau, D.: Module Hom-algebras (2008). arXiv:0812.4695
Yau, D.: The Hom–Yang–Baxter equation, Hom–Lie algebras, and quasi-triangular bialgebras. J. Phys. A Math. Theor. 42, 165202 (2009)
Yau, D.: Hom-quantum groups III: representations and module Hom-algebras (2009). arXiv:0911.5402
Yau, D.: Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8, 45–64 (2010)
Yau, D.: Hom-quantum groups I: quasi-triangular Hom-bialgebras. J. Phys. A Math. Theor. 45, 065203 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D.N. Yetter.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Panaite, F., Schrader, P.T. & Staic, M.D. Hom–Tensor Categories and the Hom–Yang–Baxter Equation. Appl Categor Struct 27, 323–363 (2019). https://doi.org/10.1007/s10485-019-09556-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-019-09556-y