Cowellpoweredness of Some Categories of Quasi-Uniform Spaces

  • Dikran Dikranjan
  • Hans-Peter A. Künzi


We study cowellpoweredness in the category \(\mathbf{QUnif}\) of quasi-uniform spaces and uniformly continuous maps. A full subcategory \(\mathcal{A}\) of \(\mathbf{QUnif}\) is cowellpowered when the cardinality of the codomains of any class of epimorphisms in \(\mathcal{A}\), with a fixed common domain, is bounded. We use closure operators in the sense of Dikranjan–Giuli–Tholen which provide a convenient tool for describing the subcategories \(\mathcal{A}\) of \(\mathbf{QUnif}\) and their epimorphisms. Some of the results are obtained by using the knowledge of closure operators, epimorphisms and cowellpoweredness of subcategories of the category \(\mathbf{Top}\) of topological spaces and continuous maps. The transfer is realized by lifting these subcategories along the forgetful functor \(T{:}\mathbf{QUnif}\rightarrow \mathbf{Top}\) and studying when epimorphisms and cowellpoweredness are preserved by the lifting. In other cases closure operators of \(\mathbf{QUnif}\) are used to provide specific results for \(\mathbf{QUnif}\) that have no counterpart in \(\mathbf{Top}\). This leads to a wealth of cowellpowered categories and a wealth of non-cowellpowered categories of quasi-uniform spaces, in contrast with the current situation in the case of the smaller category \(\mathbf{Unif}\) of uniform spaces, where no example of a non-cowellpowered subcategory is known so far. Finally, we present our main example: a non-cowellpowered full subcategory of \(\mathbf{QUnif}\) which is the intersection of two “symmetric” cowellpowered full subcategories of \(\mathbf{QUnif}\).


Quasi-uniform space Uniform space (Regular, semiregular) closure operator \(\theta \)-closure Sequential closure \(S(\alpha )\)-space \(\varrho \)-separated space Epimorphism cowellpoweredness Cowellpowered category 

Mathematics Subject Classification

Primary 18A20 54B30 54D10 54E15 Secondary 18B30 54B17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Pure and Applied Mathematics. Wiley, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Burke, M.: Characterizing uniform continuity with closure operators. Topol. Appl. 59, 245–259 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Banakh, T., Ravsky, A.: Verbal covering properties of topological spaces. Topol. Appl. 201, 181–205 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Castellini, G.: Categorical Closure Operators, Mathematics: Theory and Applications. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cook, H.: Continua which admit only the identity mapping onto non-degenerate subcontinua. Fund. Math. 60, 241–249 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Diker, M., Dost, S., Altay Ugur, A.: Interior and closure operators on texture spaces I: basic concepts and Čech closure operators. Fuzzy Sets Syst. 161, 935–953 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Diker, M., Dost, S., Altay Ugur, A.: Interior and closure operators on texture spaces II: Dikranjan-Giuli closure operators and Hutton algebras. Fuzzy Sets Syst. 161, 954–972 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dikranjan, D.: Semiregular Closure Operators and Epimorphisms in Topological Categories, Suppl. Rend. Circ. Mat. Palermo, Serie II, 29 105–160 (1992)Google Scholar
  9. 9.
    Dikranjan, D., Giuli, E.: Closure operators induced by topological epireflections. Coll. Math. Soc. J. Bolyai 43, 233–246 (1983)zbMATHGoogle Scholar
  10. 10.
    Dikranjan, D., Giuli, E.: Epimorphisms and cowellpoweredness of epireflective subcategories of Top, Supp. Rend. Circolo Mat. Palermo, Serie II, 6 151–167 (1984)Google Scholar
  11. 11.
    Dikranjan, D., Giuli, E.: Ordinal invariants and epimorphisms in some categories of weak Hausdorff spaces. Comm. Math. Univ. Carolinae 27, 395–417 (1986)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dikranjan, D., Giuli, E.: Closure operators I. Topol. Appl. 27, 129–143 (1987)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dikranjan, D., Giuli, E.: Inclusions preserving epimorphisms. In: Proceedings of Topology Conference Baku (USSR), pp. 220–230 (1987)Google Scholar
  14. 14.
    Dikranjan, D., Giuli, E.: \(S(n)\)-\(\theta \)-closed spaces. Topol. Appl. 28, 59–74 (1988)CrossRefzbMATHGoogle Scholar
  15. 15.
    Dikranjan, D., Giuli, E., Tholen, W.: Closure operators II, Proceedings of the International Conference on Categorical Topology, Prague, (World Scientific, Singapore 1989) pp. 297–335 (1988)Google Scholar
  16. 16.
    Dikranjan, D., Gotchev, I.: Sequentially closed and absolutely closed spaces, Bollettino U.M.I. (7) 1-B , 849–860 (1987)Google Scholar
  17. 17.
    Dikranjan, D., Künzi, H.-P.: Epimorphisms and cowellpoweredness in quasi uniform spaces. Proceedings of the Symposium in Honour of the 70th Birthday of Bernhard Banaschewski, Cape Town 1996, Applied Categorical Structures 8 175–207 (2000)Google Scholar
  18. 18.
    Dikranjan, D., Pelant, J.: The impact of closure operators on the structure of a concrete category. Quaestiones Math. 18, 381–396 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dikranjan, D., Tholen, W.: Categorical Structure of Closure operators with Applications to Topology, Algebra and Discrete Mathematics, Mathematics and its Applications, vol. 346. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  20. 20.
    Dikranjan, D., Tholen, W., Watson, S.: Classification of Closure Operators for Categories of Topological Spaces. Categorical Structures and their Applications, pp. 69–98. World Science Publication, River Edge (2004)zbMATHGoogle Scholar
  21. 21.
    Dikranjan, D., Watson, S.: The category of \(S(\alpha )\)-spaces is not cowellpowered. Topol. Appl. 61, 137–150 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dikranjan, D., Zava, N.: Some categorical aspects of coarse spaces and balleans. Topol. Appl. 225, 164–194 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Giuli, E., Hušek, M.: A diagonal theorem for epireflective subcategories of Top and cowellpoweredness. Ann. Mat. Pura ed Appl. 145, 337–346 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Giuli, E., Simon, P.: On spaces in which every bounded subset is Hausdorff. Topol. Appl. 37, 267–274 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Giuli, E., Šlapal, J.: Neighborhoods with respect to a categorical closure operator. Acta Math. Hungar. 124(1–2), 1–14 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Herrlich, H.: Epireflective subcategories of TOP need not be cowellpowered. Comment. Math. Univ. Carolinae 16, 713–715 (1975)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hoffmann, R.: Topological functors admitting a generalized Cauchy-completion, Proc. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Mathematics 540 (Springer, Berlin, 1976) pp. 286–344Google Scholar
  28. 28.
    Holgate, D.: Closure operators in categories, M.Sc. Thesis, Department of Mathematics, University of Cape Town, (1992)Google Scholar
  29. 29.
    Holgate, D., Šlapal, J.: Categorical neighborhood operators. Topol. Appl. 158, 2356–2365 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Isbell, J.: Uniform Spaces, Math. Surveys, vol. 12, American Mathematical Society, Providence (1964)Google Scholar
  31. 31.
    Isbell, J.: Epimorphisms and dominions, Proc. Conf. Categorical Algebra (La Lolla, 1965) Springer, pp. 232–246Google Scholar
  32. 32.
    James, I.M.: Topological and Uniform Spaces. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  33. 33.
    Künzi, H.P.: Functorial admissible quasi-uniformities on topological spaces. Topol. Appl. 43, 27–36 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Künzi, H.P.: Nontransitive quasi-uniformities in the Pervin quasi-proximity class. Proc. Amer. Math. Soc. 130(12), 3725–3730 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Künzi, H.P., Lüthy, A.: Dense subspaces of quasi-uniform spaces. Stud. Sci. Math. Hung. 30, 289–301 (1995)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lowen, R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  37. 37.
    Plaut, C.: Quotients of uniform spaces. Topol. Appl. 153, 2430–2444 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Porter, J., Votaw, C.: \(S(\alpha )\) spaces and regular Hausdorff extensions. Pacific J. Math. 45(1), 327–345 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Salbany, S.: Reflective subcategories and closure operators. In Lecture Notes in Mathematics, vol. 540, pp. 548–565. Springer, Berlin (1976)Google Scholar
  40. 40.
    Schröder, J.: Epi und extremer mono in \(T_{2,5}\). Arch. Math. 25, 561–565 (1974)CrossRefzbMATHGoogle Scholar
  41. 41.
    Schröder, J.: The category of Urysohn spaces is not cowellpowered. Topol. Appl. 16, 237–241 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Schröder, J.: Large sources and closure operators in topological constructs, Rend. Circ. Mat. Palermo, Ser. II, 42 249–256 (1993)Google Scholar
  43. 43.
    Schröder, J.: Epis in the Category of Pairwise-\(T_2\) Spaces, Categorical Topology (L’Aquila, 1994), pp. 245–248. Kluwer Academic Publiction, Dordrecht (1996)Google Scholar
  44. 44.
    Tozzi, A.: US-spaces and closure operators, Suppl. Rend. Circolo Mat. Palermo, Serie II, 12, pp. 291–300 (1986)Google Scholar
  45. 45.
    Velichko, H.: \(H\)-closed topological spaces, Mat. Sb.(N.S.) 70 (112), 98–112 (Amer. Math. Soc. Transl. 78, Ser. 2 (1969) pp. 103–118.) (1966)Google Scholar
  46. 46.
    Viglino, G.: \({\overline{T}}_{n}\)-spaces. Notices Amer. Math. Soc. 16, 846 (1969)MathSciNetGoogle Scholar
  47. 47.
    Zava, N.: Cowellpoweredness in Coarse. Topol. Appl. (to appear)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di UdineUdineItaly
  2. 2.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations