The Gray Tensor Product Via Factorisation
Article
First Online:
- 82 Downloads
- 1 Citations
Abstract
We discuss the folklore construction of the Gray tensor product of 2-categories as obtained by factoring the map from the funny tensor product to the cartesian product. We show that this factorisation can be obtained without using a concrete presentation of the Gray tensor product, but merely its defining universal property, and use it to give another proof that the Gray tensor product forms part of a symmetric monoidal structure. The main technical tool is a method of producing new algebra structures over Lawvere 2-theories from old ones via a factorisation system.
Keywords
Monoidal category Factorisation system Lawvere theoryMathematics Subject Classification (2010)
18A30 18A32 18D05Preview
Unable to display preview. Download preview PDF.
References
- 1.Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories: The Joy of Cats (2006). Reprints in Theory and Applications of CategoriesGoogle Scholar
- 2.Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, vol. 189 of London Mathematical Society Lecture Note Series. Cambridge University Press (1994)Google Scholar
- 3.Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar, vol. 47 of Lecture Notes in Mathematics. Springer, 1967, pp. 1–77Google Scholar
- 4.Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59(1), 1–41 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Borceux, F.: Handbook of Categorical Algebra 2, vol. 51 of Encyclopedia of Mathematics and its Applications. Cambridge University Press (1994)Google Scholar
- 6.Bourke, J.: Two-dimensional monadicity. Adv. Math. 252, 708–747 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Bourke, J., Garner, R.: On semiflexible, flexible and pie algebras. J. Pure Appl. Algebra 217(3), 293–321 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Cassidy, C., Hébert, M., Kelly, G.M.: Reflective subcategories, localizations and factorization systems. J. Australian Math. Society Series A 38(3), 287–329 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Cohen, J.: Coherence for rewriting 2-theories. PhD thesis, Australian National University (2009)Google Scholar
- 10.Day, B., Laplaza, M.: On embedding closed categories. Bull. Aust. Math. Soc. 18(3), 357–371 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Gordon, R., Power, J., Street, R.: Coherence for Tricategories. Memoirs of the American Mathematical Society, 117 (1995)Google Scholar
- 12.Gray, J.: 2-Algebraic Theories and Triples. In: Colloques sur l’algebre des categories. Amiens 1973. Resumes des conferences. (2015), vol. 14, pp. 178–180Google Scholar
- 13.Gray, J.W.: Formal Category Theory: Adjointness for 2-Categories, vol. 391 of Lecture Notes in Mathematics. Springer (1974)Google Scholar
- 14.Gray, J.W.: Coherence for the tensor product of 2-categories and braid groups. Algebra, topology and category theory: a collection of papers in honour of Samuel Eilenberg (1976)Google Scholar
- 15.Gurski, N.: Coherence in Three-Dimensional Category Theory. Cambridge University Press (2013)Google Scholar
- 16.Kelly, G.M., Lack, S.: Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads. Appl. Categ. Struct. 1(1), 85–94 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Lack, S.: Icons. Appl. Categ. Struct. 18(3), 289–307 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Lack, S., Power, J.: Two-dimensional Lawvere theories. In: preparationGoogle Scholar
- 19.Lack, S., Power, J.: Lawvere 2-theories. Presented at CT2007, Coimbra (2007)Google Scholar
- 20.Lack, S., Rosický, J.: Notions of Lawvere Theory. Appl. Categ. Struct. 1, 363–391 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Columbia University, PhD thesis (1963)Google Scholar
- 22.Power, A.J.: Enriched Lawvere Theories. Theory and Applications of Categories 6(7), 83–93 (1999)MathSciNetzbMATHGoogle Scholar
- 23.Power, J.: Discrete Lawvere Theories. In: Algebra and coalgebra in computer science, vol. 3629 of Lecture notes in Computer Science. Springer, Berlin, pp 348–363 (2015)Google Scholar
- 24.Yanofsky, N.: The syntax of coherence. Cahiers de Topologie et Geométrie Différentielle Catégoriques 41(4), 255–304 (2000)MathSciNetzbMATHGoogle Scholar
- 25.Yanofsky, N.: Coherence, homotopy and 2-theories. K-Theory 23(3), 203–235 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 2016