Advertisement

Applied Categorical Structures

, Volume 25, Issue 4, pp 603–624 | Cite as

The Gray Tensor Product Via Factorisation

  • John BourkeEmail author
  • Nick Gurski
Article

Abstract

We discuss the folklore construction of the Gray tensor product of 2-categories as obtained by factoring the map from the funny tensor product to the cartesian product. We show that this factorisation can be obtained without using a concrete presentation of the Gray tensor product, but merely its defining universal property, and use it to give another proof that the Gray tensor product forms part of a symmetric monoidal structure. The main technical tool is a method of producing new algebra structures over Lawvere 2-theories from old ones via a factorisation system.

Keywords

Monoidal category Factorisation system Lawvere theory 

Mathematics Subject Classification (2010)

18A30 18A32 18D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories: The Joy of Cats (2006). Reprints in Theory and Applications of CategoriesGoogle Scholar
  2. 2.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, vol. 189 of London Mathematical Society Lecture Note Series. Cambridge University Press (1994)Google Scholar
  3. 3.
    Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar, vol. 47 of Lecture Notes in Mathematics. Springer, 1967, pp. 1–77Google Scholar
  4. 4.
    Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59(1), 1–41 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borceux, F.: Handbook of Categorical Algebra 2, vol. 51 of Encyclopedia of Mathematics and its Applications. Cambridge University Press (1994)Google Scholar
  6. 6.
    Bourke, J.: Two-dimensional monadicity. Adv. Math. 252, 708–747 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourke, J., Garner, R.: On semiflexible, flexible and pie algebras. J. Pure Appl. Algebra 217(3), 293–321 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cassidy, C., Hébert, M., Kelly, G.M.: Reflective subcategories, localizations and factorization systems. J. Australian Math. Society Series A 38(3), 287–329 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cohen, J.: Coherence for rewriting 2-theories. PhD thesis, Australian National University (2009)Google Scholar
  10. 10.
    Day, B., Laplaza, M.: On embedding closed categories. Bull. Aust. Math. Soc. 18(3), 357–371 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gordon, R., Power, J., Street, R.: Coherence for Tricategories. Memoirs of the American Mathematical Society, 117 (1995)Google Scholar
  12. 12.
    Gray, J.: 2-Algebraic Theories and Triples. In: Colloques sur l’algebre des categories. Amiens 1973. Resumes des conferences. (2015), vol. 14, pp. 178–180Google Scholar
  13. 13.
    Gray, J.W.: Formal Category Theory: Adjointness for 2-Categories, vol. 391 of Lecture Notes in Mathematics. Springer (1974)Google Scholar
  14. 14.
    Gray, J.W.: Coherence for the tensor product of 2-categories and braid groups. Algebra, topology and category theory: a collection of papers in honour of Samuel Eilenberg (1976)Google Scholar
  15. 15.
    Gurski, N.: Coherence in Three-Dimensional Category Theory. Cambridge University Press (2013)Google Scholar
  16. 16.
    Kelly, G.M., Lack, S.: Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads. Appl. Categ. Struct. 1(1), 85–94 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lack, S.: Icons. Appl. Categ. Struct. 18(3), 289–307 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lack, S., Power, J.: Two-dimensional Lawvere theories. In: preparationGoogle Scholar
  19. 19.
    Lack, S., Power, J.: Lawvere 2-theories. Presented at CT2007, Coimbra (2007)Google Scholar
  20. 20.
    Lack, S., Rosický, J.: Notions of Lawvere Theory. Appl. Categ. Struct. 1, 363–391 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Columbia University, PhD thesis (1963)Google Scholar
  22. 22.
    Power, A.J.: Enriched Lawvere Theories. Theory and Applications of Categories 6(7), 83–93 (1999)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Power, J.: Discrete Lawvere Theories. In: Algebra and coalgebra in computer science, vol. 3629 of Lecture notes in Computer Science. Springer, Berlin, pp 348–363 (2015)Google Scholar
  24. 24.
    Yanofsky, N.: The syntax of coherence. Cahiers de Topologie et Geométrie Différentielle Catégoriques 41(4), 255–304 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Yanofsky, N.: Coherence, homotopy and 2-theories. K-Theory 23(3), 203–235 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMasaryk UniversityBrnoCzech Republic
  2. 2.School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
  3. 3.Department of MathematicsMacquarie UniversitySydneyAustralia

Personalised recommendations