Advertisement

Applied Categorical Structures

, Volume 25, Issue 2, pp 187–196 | Cite as

Accessible Model Categories

  • J. Rosický
Article
  • 85 Downloads

Abstract

We prove that a weak factorization system on a locally presentable category is accessible if and only if it is small generated in the sense of R. Garner. Moreover, we discuss an analogy of Smith’s theorem for accessible model categories.

Keywords

Weak factorization system Locally presentable category Cofibrant generation Accessible weak factorization system Accessible model category 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: Weak factorization systems and topological functors. Appl. Cat. Struct. 10, 237–249 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cah. Top. Géom Diff. Cat. CLIII, 83–106 (2002)Google Scholar
  3. 3.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press (1994)Google Scholar
  4. 4.
    Adámek, J., Rosický, J.: On pure quotients and pure subobjects. Czech. Math. Jour. 54, 623–636 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beke, T.: Sheafifiable homotopy model categories. Math. Proc. Cambr. Phil. Soc. 129, 447–475 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bourke, J., Garner, R.: Algebraic weak factorization systems I: accessible awfs. Jour. Pure Appl. Alg. 220, 148–174 (2016)CrossRefMATHGoogle Scholar
  7. 7.
    Christensen, J.D., Hovey, M.: Quillen model structures for relative homological algebra. Math. Proc. Cambr. Phil. Soc. 133, 261–293 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garner, R.: Understanding the small object argument. Appl. Categ. Struct. 17, 247–285 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grandis, M., Tholen, W.: Natural weak factorization systems. Arch. Math. (Brno) 42, 397–408 (2006)MathSciNetMATHGoogle Scholar
  10. 10.
    Makkai, M., Paré, R.: Accessible categories: The Foundation of Categorical Model Theory, Cont. Math. 104. AMS (1989)Google Scholar
  11. 11.
    Riehl, E.: Algebraic model structures. New York Jour. Math. 17, 173–231 (2011)MathSciNetMATHGoogle Scholar
  12. 12.
    Rosický, J.: On combinatorial model categories. Appl. Categ. Str. 17, 303–316 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rosický, J., Tholen, W.: Factorization, fibration and torsion. J. Homot. Rel. Struct. 2, 295–314 (2007)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Faculty of SciencesMasaryk UniversityBrnoCzech Republic

Personalised recommendations