Abstract
We characterize t-structures in stable ∞-categories as suitable quasicategorical factorization systems. More precisely we show that a t-structure 𝔱 on a stable ∞-category C is equivalent to a normal torsion theory 𝔽 on C, i.e. to a factorization system 𝔽 = (𝓔, ℳ) where both classes satisfy the 3-for-2 cancellation property, and a certain compatibility with pullbacks/pushouts.
This is a preview of subscription content, access via your institution.
References
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories. The joy of Cats. Pure and Applied Mathematics (New York). Wiley, New York (1990). MR 1051419 (91h:18001)
Beı̆linson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), Astérisque, vol. 100. Soc. Math. France, Paris, 5–171 (1982). MR 751966 (86g:32015)
Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188(883), viii+207 (2007). MR 2327478 (2009e:18026)
Bridgeland, T.: Stability conditions on triangulated categories. Ann. of Math. (2) 166(2), 317–345 (2007). MR 2373143 (2009c:14026)
Caramello, O.: The unification of mathematics via topos theory. arXiv:1006.3930 (2010)
Cassidy, C., Hébert, M., Kelly, G.M.: Reflective subcategories, localizations and Factorization Systems. J. Aust. Math. Soc.(Series A) 38(03), 287–329 (1985)
DellAmbrogio, I.: The Spanier-Whitehead Category is Always Triangulated, Ph.D. thesis. Diplomarbeit an der ETH Zürich (2003-04) (2004)
Freyd, P.J., Kelly, G.M.: Categories of continuous functors. I. J. Pure Appl. Algebra 2, 169–191 (1972). MR 0322004 (48 #369)
Fiorenza, D., Loregiàn, F.: Hearts and Postnikov towers on stable ∞-categories. arXiv:1501.04658 (2015)
Garner, R.: Understanding the small object argument, 2009. Appl. Categ. Struct. 17(3), 247–285 (2009)
Gorodentsev, A.L., Kuleshov, S.A., Rudakov, A.N.: t-stabilities and t-structures on triangulated categories. Izv. Ross. A.ad. Nauk Ser. Mat 68(4), 117–150 (2004). MR 2084563 (2005j:18008)
Gelfand, S.I., Manin, Y.I.: Methods of Homological Algebra. Springer-Verlag, Berlin (1996). Translated from the 1988 Russian original. MR 1438306 (97j:18001)
Groth, M: A short course on ∞-categories. arXiv:1007.2925 (2010)
Heller, A.: Stable homotopy categories. Bull. Amer. Math. Soc 74, 28–63 (1968). MR 0224090 (36 #7137)
Hovey, M.: Model Categories, Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999). MR 1650134 (99h:55031)
Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128(610), x+114 (1997). MR 1388895 (98a:55017)
G.J., Márki, L.: A simplicial approach to factorization systems and Kurosh-Amitsur radicals. J. Pure Appl. Algebra 213(12), 2229–2237 (2009). MR 2553599 (2010j:18028)
Joyal, A.: Notes on quasi-categories. In: Proceedings of the IMA Workshop “n-Categories: Foundations and Applications” (2004)
Janelidze, G., Tholen, W.: Functorial factorization, well-pointedness and separability. J. Pure Appl. Algebra 142(2), 99–130 (1999). MR 1715403 (2001d:18002)
Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292. Springer-Verlag, Berlin (1994). With a chapter in French by Christian Houzel, Corrected reprint of the 1990 original. MR 1299726 (95g:58222)
Korostenski, M., Tholen, W.: Factorization systems as Eilenberg-Moore algebras. J. Pure Appl. Algebra 85(1), 57–72 (1993). MR 1207068 (94a:18002)
Lurie, J.: Higher Topos Theory, Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009). MR 2522659 (2010j:18001)
Lurie, J: Higher Algebra. online version May 18 2011
Mac Lane, S.: Categories for the working mathematician, 2nd ed. Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York (1998). MR 1712872 (2001j:18001)
Muro, F., Schwede, S., Strickland, N.: Triangulated categories without models. Invent Math 170(2), 231–241 (2007). MR 2342636 (2008g:18016)
Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001). vii, 449 p., (English)
Riehl, E: Factorization systems (2008)
Riehl, E: Algebraic model structures. New York J. Math 17, 173–231 (2011). MR 2781914 (2012g:55030)
Rosický, J., Tholen, W.: Factorization, fibration and torsion. J. Homotopy Relat. Struct 2(2), 295–314 (2007). MR 2369170 (2008m:18023)
Schreiber, U.: Differential cohomology in a cohesive ∞-topos. arXiv:1310.7930
Schwede, S.: Algebraic Versus Topological Triangulated Categories. Triangulated Categories, London Math. Soc. Lecture Note Ser., vol. 375, pp 389–407. Cambridge University Press, Cambridge (2010). MR 2681714 (2012i:18012)
Wofsey, E.: http://mathoverflow.net/a/168868/7952
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fiorenza, D., Loregiàn, F. t-Structures are Normal Torsion Theories. Appl Categor Struct 24, 181–208 (2016). https://doi.org/10.1007/s10485-015-9393-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-015-9393-z
Keywords
- Stable ∞-category
- Triangulated category
- t-structure
- Quasicategory
- Orthogonal factorization system
- Torsion theory
- Stability conditions on triangulated categories
Mathematics Subject Classifications (2010)
- 18E30
- 18E35
- 18A40