Abstract
Let Gls denote the category of (possibly large) ordered sets with Galois connections as morphisms between ordered sets. The aim of the present paper is to characterize semi-abelian and regular protomodular categories among all regular categories ℂ, via the form of subobjects of ℂ, i.e. the functor ℂ → Gls which assigns to each object X in ℂ the ordered set Sub(X) of subobjects of X, and carries a morphism f : X → Y to the induced Galois connection Sub(X) → Sub(Y) (where the left adjoint maps a subobject m of X to the regular image of fm, and the right adjoint is given by pulling back a subobject of Y along f). Such functor amounts to a Grothendieck bifibration over ℂ. The conditions which we use to characterize semi-abelian and regular protomodular categories can be stated as self-dual conditions on the bifibration corresponding to the form of subobjects. This development is closely related to the work of Grandis on “categorical foundations of homological and homotopical algebra”. In his work, forms appear as the so-called “transfer functors” which associate to an object the lattice of “normal subobjects” of an object, where “normal” is defined relative to an ideal of null morphism admitting kernels and cokernels.
This is a preview of subscription content,
to check access.References
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Reprints in Theory Applications of Categories (2006)
Barr, M., Grillet, P.A., van Osdol, D.H.: Exact categories and categories of sheaves. Springer Lect. Notes Math. 236 (1971)
Beutler, E.: An idealtheoretic characterization of varieties of abelian Ω-groups. Algebra Univers. 8, 91–100 (1978)
Borceux, F.: A survey of semi-abelian categories. Fields Inst. Commun. 43, 27–60 (2004)
Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, Mathematics and its Applications 566. Kluwer (2004)
Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. Springer Lect. Notes Math. 1488, 43–62 (1991)
Bourn, D.: 3 × 3 lemma and protomodularity. J. Algebra 236, 778–795 (2001)
Bourn, D., Janelidze, G.: Characterization of protomodular varieties of universal algebras. Theory Appl. Categories 11, 143–147 (2003)
Brümmer, G.C.L.: Topological categories. Topol. Appl. 18, 27–41 (1984)
Carboni, A., Janelidze, G.: Modularity and descent. J. Pure Appl. Algebra 99, 255–265 (1995)
Ehresmann, C.: Sur une notion générale de cohomologie. C. R. Acad. Sci Paris 259, 2050–2053 (1964)
Grandis, M.: Transfer functors and projective spaces. Math. Nachr. 118, 147–165 (1984)
Grandis, M.: On the categorical foundations of homological and homotopical algebra. Cah. Top. Géom. Diff. Catég 33, 135–175 (1992)
Grandis, M.: Homological Algebra, The Interplay of Homology with Distributive Lattices and Orthodox Semigroups. World Scientific Publishing Co., Singapore (2012)
Grandis, M.: Homological Algebra in Strongly Non-Abelian Settings. World Scientific Publishing Co., Singapore (2013)
Grothendieck, A.: Catégories fibrées et descente, Exposé VI, Revétements Etales et Groupe Fondamental (SGA1), Springer Lect. Notes Math. 224, 145-194 (1971)
Janelidze, G., Márki, L., Tholen, W.: Semi-abelian categories. J. Pure Appl. Algebra 168, 367–386 (2002)
Janelidze, Z.: Subtractive categories. Appl. Categ. Struct. 13, 343–350 (2005)
Janelidze, Z.: Closedness properties of internal relations V: Linear Mal’tsev conditions. Algebra Univers. 58, 105–117 (2008)
Janelidze, Z.: Cover relations on categories. Appl. Categ. Struct. 17, 351–371 (2009)
Janelidze, Z.: The pointed subobject functor, 3x3 lemmas, and subtractivity of spans. Theory Appl. Categ. 23, 221–242 (2010)
Janelidze, Z.: An axiomatic survey of diagram lemmas for non-abelian group-like structures. J. Algebra 370, 387–401 (2012)
Janelidze, Z., Ursini, A.: Split short five lemma for clots and subtractive categories. Appl. Categ. Struct. 19, 233–255 (2011)
Lavendhomme, R.: La notion d’idéal dans la théorie des catégories. Ann. Soc. Sci. Brux. Sér 1(79), 5–25 (1965)
Mac Lane, S.: Duality for groups. Bull. Am. Math. Soc. 56, 485–516 (1950)
Mac Lane, S.: Homology, Die Grundlehren der mathematischen Wissenschaften 114. Academic, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg (1963)
Mac Lane, S.: Categories for the working mathematician 2nd edn. In: Graduate Texts in Mathematics 5. Springer-Verlag, New York-Berlin (1971)
Mac Lane, S., Birkhoff, G.: Algebra 3rd edn. Chelsea Publishing Co., New York (1988)
Michael, F.I.: A note on the five lemma. Appl. Categ. Struct. 21, 441–448 (2013)
Michael, F.I.: On a unified categorical setting for homological diagram lemmas. MSc Thesis. Stellenboch University (2011)
Ursini, A.: Osservazioni sulla varietà BIT Boll. Unione Mat. Ital 8, 205–211 (1973)
Wyler, O.: Weakly exact categories. Arch. der Mathematik (Basel) 17, 9–19 (1966)
Wyler, O.: Top categories and categorical topology. Gen. Topol. Appl. 1, 17–28 (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by South African National Research Foundation
Rights and permissions
About this article
Cite this article
Janelidze, Z. On the Form of Subobjects in Semi-Abelian and Regular Protomodular Categories. Appl Categor Struct 22, 755–766 (2014). https://doi.org/10.1007/s10485-013-9355-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-013-9355-2
Keywords
- Form
- Galois connection
- Grothendieck fibration
- Topological theory
- Topological functor
- Cartesian natural transformation
- Semi-abelian category
- Protomodular category
- Regular category
- Ideal of null morphisms
- Semiexact category
- Five lemma