Skip to main content
Log in

A Categorical Foundation for Bayesian Probability

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Building on the work of Lawvere and others, we develop a categorical framework for Bayesian probability. This foundation will then allow for Bayesian representations of uncertainty to be integrated into other categorical modeling applications. The main result uses an existence theorem for regular conditional probabilities by Faden, which holds in more generality than the standard setting of Polish spaces. This more general setting is advantageous, as it allows for non-trivial decision rules (Eilenberg–Moore algebras) on finite (as well as non finite) spaces. In this way, we obtain a common framework for decision theory and Bayesian probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored ∗-categories. J. Pure Appl. Algebra 143, 3–47 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barr, M., Wells, C.: Toposes, triples and theories. Repr. Theory Appl. Categ. (12) (2005). Corrected reprint of the 1985 original (Springer-Verlag)

  3. Berger, J.: Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer Series in Statistics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  4. Čencov, N.: Statistical decision rules and optimal inference. In: Translations of Mathematical Monographs, vol. 53. American Mathematical Society (1982)

  5. Doberkat, E.E.: Characterizing the Eilenberg–Moore algebras for a monad of stochastic relations. Internal Memorandum No. 147 (2004)

  6. Doberkat, E.E.: Derandomizing probabilistic semantics through Eilenberg–moore algebras for the Giry monad. Internal Memorandum No. 149 (2004)

  7. Doberkat, E.E.: Kleisli morphisms and randomized congruences for the giry monad. J. Pure Appl. Algebra 211(3), 638–664 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dudley, R.: Real analysis and probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  9. Faden, A.M.: The existence of regular conditional probabilities: necessary and sufficient conditions. Ann. Probab. 13(1), 288–298 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology and Analysis (Ottawa, Ont., 1980). Lecture Notes in Math., vol. 915, pp. 68–85. Springer, Berlin-New York (1982)

  11. Howson, C., Urbach, P.: Scientific Reasoning: The Bayesian Approach, 2nd edn. Open Court Publishing, Chicago (1993)

    Google Scholar 

  12. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  13. Kock, A.: Commutative monads as a theory of distributions. Theory Appl. Categ. 26, 97–131 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Korman, J., McCann, R.: Optimal transportation with capacity constraints (2012). arXiv:1201.6404v2

  15. Meng, X.: Categories of convex sets and of metric spaces, with applications to stochastic programming and related areas. Ph.D. thesis, State University of New York at Buffalo (1988)

  16. Pachl, J.K.: Disintegration and compact measures. Math. Scand. 43, 157–168 (1978)

    MATH  MathSciNet  Google Scholar 

  17. Ramachandran, D.: Perfect mixtures of perfect measures. Ann. Probab. 7, 444–452 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rodine, R.H.: Perfect probability measures and regular conditional probabilities. Ann. Math. Stat. 37, 1273–1278 (1966)

    Article  MATH  Google Scholar 

  19. Wendt, M.: The category of disintegrations. Cah. Topol. Géom. Différ. Catég. 35(4), 291–308 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Culbertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culbertson, J., Sturtz, K. A Categorical Foundation for Bayesian Probability. Appl Categor Struct 22, 647–662 (2014). https://doi.org/10.1007/s10485-013-9324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9324-9

Keywords

Mathematics Subject Classifications (2010)

Navigation