Skip to main content
Log in

A Coboundary Morphism for the Grothendieck Spectral Sequence

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Given an abelian category \(\mathcal{A}\) with enough injectives we show that a short exact sequence of chain complexes of objects in \(\mathcal{A}\) gives rise to a short exact sequence of Cartan-Eilenberg resolutions. Using this we construct coboundary morphisms between Grothendieck spectral sequences associated to objects in a short exact sequence. We show that the coboundary preserves the filtrations associated with the spectral sequences and give an application of these result to filtrations in sheaf cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraglia, D.: Topological T-duality for torus bundles with monodromy. arXiv:1201.1731v1 (2012)

  2. Batanin, M.A.M.: Mappings of spectral sequences and the generalized homotopy axiom. Sib. Mat. Z. 28(5), 22–31, 226 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249(2), 383–415 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brylinski, J.-L.: Loop spaces, characteristic classes and geometric quantization. In: Progress in Mathematics, vol. 107, 300 pp. Birkhäuser Boston, Inc., Boston, MA (1993)

    Google Scholar 

  5. Bunke, U., Rumpf, P., Schick, T.: The topology of T-duality for T n-bundles. Rev. Math. Phys. 18(10), 1103–1154 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cartan, H., Eilenberg, S.: Homological Algebra, 390 pp. Princeton University Press, Princeton, N. J. (1956)

    MATH  Google Scholar 

  7. Engelking, R.: General topology, 2nd edn. In: Sigma Series in Pure Mathematics, vol. 6, 529 pp. Heldermann Verlag, Berlin (1989)

    Google Scholar 

  8. Freyd, P.: Abelian categories. In: An Introduction to the Theory of Functors, 164 pp. Harper & Row, New York (1964)

    Google Scholar 

  9. Gelfand, S.I., Manin, Y.I.: Methods of homological algebra. In: Translated from the 1988 Russian Original, 372 pp. Springer-Verlag, Berlin (1996)

    Google Scholar 

  10. Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J. 9(2), 119–221 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  11. Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 54(2), 403–416 (1996)

    Article  MATH  Google Scholar 

  12. Stevenson, D.: The Geometry of Bundle Gerbes. PhD thesis, University of Adelaide. math.DG/0004117 (2000)

  13. Voisin, C.: Hodge theory and complex algebraic geometry. II. In: Cambridge Studies in Advanced Mathematics, vol. 77, 351 pp. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Weibel, C.: An Introduction to Homological Algebra, 450 pp. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baraglia.

Additional information

This work is supported by the Australian Research Council Discovery Project DP110103745.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraglia, D. A Coboundary Morphism for the Grothendieck Spectral Sequence. Appl Categor Struct 22, 269–288 (2014). https://doi.org/10.1007/s10485-013-9306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9306-y

Keywords

Mathematics Subject Classifications (2010)

Navigation