Skip to main content
Log in

Saturation, Yosida Covers and Epicompleteness in Compact Normal Frames

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In this article the frame-theoretic account of what is archimedean for order-algebraists, and semisimple for people who study commutative rings, deepens with the introduction of \({\mathcal{J}}\)-frames: compact normal frames that are join-generated by their saturated elements. Yosida frames are examples of these. In the category of \({\mathcal{J}}\)-frames with suitable skeletal morphisms, the strongly projectable frames are epicomplete, and thereby it is proved that the monoreflection in strongly projectable frames is the largest such. That is news, because it settles a problem that had occupied the first-named author for over five years. In compact normal Yosida frames the compact elements are saturated. When the reverse is true one gets the perfectly saturated frames: the frames of ideals Idl(E), when E is a compact regular frame. The assignment E↦Idl(E) is then a functorial equivalence from compact regular frames to perfectly saturated frames, and the inverse equivalence is the saturation quotient. Inevitable are the Yosida covers (of a \({\mathcal{J}}\)-frame L): coherent, normal Yosida frames of the form Idl(F), with F ranging over certain bounded sublattices of the saturation SL of L. These Yosida frames cover L in the sense that each maps onto L densely and codensely. Modulo an equivalence, the Yosida covers of L form a poset with a top \({\mathcal{Y}} L\), the latter being characterized as the only Yosida cover which is perfectly saturated. Viewed correctly, these Yosida covers provide, in a categorical setting, another (point-free) look at earlier accounts of coherent normal Yosida frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, R.N., Hager, A.W.: Archimedean kernel distinguishing extensions of archimedean ℓ-groups with weak unit. Indian J. Math. 29, 351–368 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Banaschewski, B.: Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carol. 29, 647–656 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Banaschewski, B., Harting, R.: Lattice aspects of radical ideals and choice principles. Proc. Lond. Math. Soc. 50, 385–404 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banaschewski, B., Niefield, S.B.: Projective and supercoherent frames. J. Pure Appl. Algebra 70, 45–51 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banaschewski, B., Pultr, A.: Booleanization. Cah. de Top. et Géom. Diff. Cat. XXXVII-1, 41–60 (1996)

    MathSciNet  Google Scholar 

  6. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, vol. 608. Springer, Berlin-Heidelberg-New York (1977)

  7. Darnel, M.: Theory of Lattice-Ordered Groups. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  8. Gillman, L., Jerison, M.: Rings of Continuous Functions. Grad. Texts Math., vol. 43. Springer, Berlin-Heidelberg-New York (1976)

    Google Scholar 

  9. Hager, A.W., Robertson, L.C.: Representing and ringifying a Riesz space. Proc. Symp. on Ordered Groups and Rings, Rome (1975); Symp. Math. 21, 411–431 (1977)

    MathSciNet  Google Scholar 

  10. Herrlich, H., Strecker, G.: Category Theory. Sigma Series Pure Math., vol. 1. Heldermann Verlag, Berlin (1979)

    Google Scholar 

  11. Johnstone, P.T.: Tychonoffs theorem without the axiom of choice. Fundam. Math. 113, 21–35 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Johnstone, P.T.: Stone Spaces. Cambridge Studies in Adv. Math, vol. 3. Cambridge Univ. Press (1982)

  13. Koppelberg, S.: Projective boolean algebras. Chapter 20 in the Handbook of Boolean Algebras, 3, pp. 741–772. Elsevier, Amsterdam (1989)

    Google Scholar 

  14. Martínez, J.: Archimedean frames, revisited. Comment. Math. Univ. Carol. 49(1), 25–44 (2008)

    MATH  Google Scholar 

  15. Martínez, J.: Epicompletion in frames with skeletal maps, III: when maps are closed. Appl. Categ. Struct. 19, 489–504 (2011)

    Article  MATH  Google Scholar 

  16. Martínez, J.: Epicompletion in frames with skeletal maps, IV: *-regular frames. Appl. Categ. Struct. 20, 189–208 (2012)

    Article  MATH  Google Scholar 

  17. Martínez, J.: An innocent theorem of Banaschewski applied to an unsuspecting theorem of De Marco and the aftermath thereof. Forum Mathematicum (to appear)

  18. Martínez, J., Zenk, E.R.: When an algebraic frame is regular. Algebra Univers. 50, 231–257 (2003)

    Article  MATH  Google Scholar 

  19. Martínez, J., Zenk, E.R.: Dimension in algebraic frames, II: applications to frames of ideals in C(X). Comment. Math. Univ. Carol. 46(4), 607–636 (2005)

    MATH  Google Scholar 

  20. Martínez, J., Zenk, E.R.: Nuclear typings of frames vs spatial selectors. Appl. Categ. Struct. 14, 35–61 (2006)

    Article  MATH  Google Scholar 

  21. Martínez, J., Zenk, E.R.: Yosida frames. J. Pure Appl. Algebra 204, 473–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martínez, J., Zenk, E.R.: Epicompletion in frames with skeletal maps, I: compact regular frames. Appl. Categ. Struct. 16, 521–533 (2008)

    Article  MATH  Google Scholar 

  23. Martínez, J., Zenk, E.R.: Epicompletion in frames with skeletal maps, II: compact normal, joinfit frames. Appl. Categ. Struct. 17, 467–486 (2009)

    Article  MATH  Google Scholar 

  24. Pedicchio, M.C., Tholen, W.: Special Topics in Order, Topology, Algebra and Sheaf Theory. Cambridge Univ. Press, Cambridge, UK (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J., McGovern, W.W. Saturation, Yosida Covers and Epicompleteness in Compact Normal Frames. Appl Categor Struct 21, 751–780 (2013). https://doi.org/10.1007/s10485-012-9289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-012-9289-0

Keywords

Mathematics Subject Classifications (2010)

Navigation