Skip to main content
Log in

\({\boldsymbol(}\boldsymbol{\mathcal{Z}}_{\bf 1}, \boldsymbol{\mathcal{Z}}_{\bf 2}{\boldsymbol)}\)-Complete Partially Ordered Sets and Their Representations by \(\boldsymbol{\mathcal{Q}}\)-Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The present paper proposes a general theory for \(\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) \)-complete partially ordered sets (alias \(\mathcal{Z} _{1}\)-join complete and \(\mathcal{Z}_{2}\)-meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections \(\mathcal{Z}_{i}\) (i = 1,...,4) and \(\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) \), the category \(\mathcal{Q}\) P of \(\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) \)-complete partially ordered sets and \(\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) \)-continuous (alias \(\mathcal{ Z}_{3}\)-join preserving and \(\mathcal{Z}_{4}\)-meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category \(\mathcal{Q}\) S of \(\mathcal{Q}\)-spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory \( \mathcal{Q}\) P s of \(\mathcal{Q}\) P of all \(\mathcal{Q}\)-spatial objects and the full subcategory \(\mathcal{Q}\) S s of \(\mathcal{Q}\) S of all \(\mathcal{Q}\)-sober objects. Here \(\mathcal{Q}\)-spatiality and \(\mathcal{Q}\)-sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to \(\mathcal{Z}\)-compact generation and \(\mathcal{Z}\)-sobriety have also been pointed out in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. The Clarendon Press, Oxford University Press, New York (1994)

    Google Scholar 

  2. Adámek, J.: Construction of free continuous algebras. Algebra Univers. 14, 140–166 (1982)

    Article  MATH  Google Scholar 

  3. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)

    MATH  Google Scholar 

  4. Adámek, J., Koubek, V., Nelson E., Reiterman, J.: Arbitrarily large continuous algebras on one generator. Trans. Am. Math. Soc. 291, 681–699 (1985)

    Article  MATH  Google Scholar 

  5. Adámek, J., Nelson, E., Reiterman, J.: Continuous algebras revisited. J. Comput. Syst. Sci. 51, 460–471 (1995)

    Article  MATH  Google Scholar 

  6. Banaschewski, B.: The duality of distributive σ-continuous lattices. In: Banaschewski, B., Hoffmann, R.-E. (eds.) Continuous Lattices, Proc. Bremen, 1979. Lecture Notes in Math., vol. 871, pp. 12–20. Springer, Berlin (1981)

    Chapter  Google Scholar 

  7. Banaschewski, B., Bruns, G.: The fundamental duality of partially ordered sets. Order 5, 61–74 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banaschewski, B., Gilmour, C.: Stone-Cech compactification and dimension theory for regular σ-frames. J. Lond. Math. Soc. 39, 1–8 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bandelt, H.-J., Erné, M.: The category of Z-continuous posets. J. Pure Appl. Algebra 30, 219–226 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bentley, H.L., Colebunders, E., Vandersmissen, E.: A convenient setting for completions and function spaces. In: Mynard, F., et al. (eds.) Beyond Topology. Contemporary Mathematics 486, pp. 37–88. American Mathematical Society, Providence (2009)

    Chapter  Google Scholar 

  11. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications, vol. XXV. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  12. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2005)

    MATH  Google Scholar 

  13. Erné, M.: Adjunctions and standard constructions for partially ordered set. In: Eigenthaler, G., et al. (eds.) Contributions to General Algebra 2, Proc. Klagenfurt, 1982, Hölder–Pichler–Tempsky, pp. 77–106, Wien (1983)

  14. Erné, M.: Order extensions as adjoint functors. Quaest. Math. 9, 146–204 (1986)

    Article  Google Scholar 

  15. Erné, M: Bigeneration in complete lattices and principle separation in posets. Order 8, 197–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erné, M.: The ABC of order and topology. In: Herrlich, H., Porst, H.E. (eds.) Category Theory at Work, pp. 57–83. Heldermann, Berlin, Germany (1991)

    Google Scholar 

  17. Erné, M.: Algebraic ordered sets and their generalizations. In: Rosenberg, I., Sabidussi, G. (eds.) Algebras and Orders, Proc. Montreal, 1992, pp. 113–192. Kluwer Academic Publishers, Amsterdam, Netherlands (1993)

    Google Scholar 

  18. Erné, M.: \(\mathcal{Z}\)-continuous posets and their topological manifestation. Appl. Categ. Struct. 7, 31–70 (1999)

    Article  MATH  Google Scholar 

  19. Erné, M.: Constructive order theory. Math. Log. Q. 47, 211–222 (2001)

    Article  MATH  Google Scholar 

  20. Erné, M.: General Stone duality. Topol. its Appl. 137, 125–158 (2004)

    Article  MATH  Google Scholar 

  21. Erné, M.: Choiceless, pointless, but not useless: dualities for preframes. Appl. Categ. Struct. 15, 541–572 (2007)

    Article  MATH  Google Scholar 

  22. Gierz, G., Hofmann, K.H., Keimel K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  23. Markowsky, G.: Categories of chain-complete posets. Theor. Comput. Sci. 4, 125–135 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  25. Nelson, E.: Z-continuous algebras. In: Banaschewski, B., Hoffmann, R.E. (eds.) Continuous Lattices. Proc. Conf., Bremen 1979. Lect. Notes Math. 871, pp. 315–334. Springer, Berlin (1981)

    Google Scholar 

  26. Nelson, E., Adámek, J., Jung, A., Reiterman, J., Tarlecki, A.: Comparison of subset systems. Comment. Math. Univ. Carol. 29, 169–177 (1988)

    MATH  Google Scholar 

  27. Novak, D.: Generalization of continuous posets. Trans. Am. Math. Soc. 272, 645–667 (1982)

    Article  MATH  Google Scholar 

  28. Pasztor, A.: The epis of Pos(Z). Comment. Math. Univ. Carol. 23, 285–299 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Powers, R.C., Riedel, T.: Z-Semicontinuous posets. Order 20, 365–371 (2003)

    Article  MathSciNet  Google Scholar 

  30. Stone, M.H.: Topological representation of distributive lattices and Brouwerian logics. Časopis Pešt. Mat. Fys. 67, 1–25 (1937)

    Google Scholar 

  31. Venugopalan, G.: Z-continuous posets. Houst. J. Math. 12, 275–294 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Wright, J.B., Wagner, E.G., Thatcher, J.W.: A uniform approach to inductive posets and inductive closure. Theor. Comput. Sci. 7, 57–77 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, D.: On projective Z-frames. Can. Math. Bull. 40, 39–46 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Demirci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirci, M. \({\boldsymbol(}\boldsymbol{\mathcal{Z}}_{\bf 1}, \boldsymbol{\mathcal{Z}}_{\bf 2}{\boldsymbol)}\)-Complete Partially Ordered Sets and Their Representations by \(\boldsymbol{\mathcal{Q}}\)-Spaces. Appl Categor Struct 21, 703–723 (2013). https://doi.org/10.1007/s10485-012-9277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-012-9277-4

Keywords

Mathematics Subject Classifications (2010)

Navigation