Applied Categorical Structures

, Volume 19, Issue 1, pp 175–232 | Cite as

The Geometry of Unitary 2-Representations of Finite Groups and their 2-Characters

Article

Abstract

Motivated by topological quantum field theory, we investigate the geometric aspects of unitary 2-representations of finite groups on 2-Hilbert spaces, and their 2-characters. We show how the basic ideas of geometric quantization are ‘categorified’ in this context: just as representations of groups correspond to equivariant line bundles, 2-representations of groups correspond to equivariant gerbes. We also show how the 2-character of a 2-representation can be made functorial with respect to morphisms of 2-representations. Under the geometric correspondence, the 2-character of a 2-representation corresponds to the geometric character of its associated equivariant gerbe. This enables us to show that the complexified 2-character is a unitarily fully faithful functor from the complexified Grothendieck category of unitary 2-representations to the category of unitary conjugation equivariant vector bundles over the group.

Keywords

2-Category Unitary 2-representation 2-Character Geometric quantization Adjunction Equivariant gerbe 

Mathematics Subject Classifications (2000)

Primary 57R56 Secondary 18D05 53D50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrose, W.: Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57, 364–386 (1945)MATHMathSciNetGoogle Scholar
  2. 2.
    Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baez, J.C.: Higher-dimensional algebra II: 2-Hilbert spaces. Adv. Math. 127, 125–189 (1997). arXiv:q-alg/9609018 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baez, J.C., Lauda, A.D.: Higher-dimensional algebra V: 2-groups. Theory Appl. Categ. 12(14), 423–491 (2004). arXiv:math.QA/0307200 MATHMathSciNetGoogle Scholar
  5. 5.
    Baez, J.C.: This week’s finds in mathematical physics week 223. http://math.ucr.edu/home/baez/week223.html (2009)
  6. 6.
    Baez, J.C., Baratin, A., Freidel, L., Wise, D.: Representations of 2-groups on higher Hilbert spaces. arXiv:0812.4969 (2009)
  7. 7.
    Barrett, J., Mackaay, M.: Categorical representations of categorical groups. Theory Appl. Categ. 16(20), 529–557 (2006). arXiv:math.CT/math.CT/0407463 MATHMathSciNetGoogle Scholar
  8. 8.
    Behrend, K., Xu, P.: Differentiable Stacks and Gerbes. arXiv:math/0605694 (2009)
  9. 9.
    Bartlett, B.: On unitary 2-representations of finite groups and topological quantum field theory. Ph.D. thesis, University of Sheffield. http://math.sun.ac.za/~bbartlett/thesis/thesis.pdf (2008)
  10. 10.
    Boyarchenko, M.: Introduction to modular categories, Lecture series at University of Chicago. Geometric Langlands Seminar. Available at www.math.uchicago.edu/~mitya/langlands.html
  11. 11.
    Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics vol. 107. Birkhauser, Boston (1993)Google Scholar
  12. 12.
    Brylinski, J.-.L., McLaughlin, D.: The geometry of degree-four characteristic classes and of line bundles on loop spaces I. Duke Math. J. 75(3), 603–638 (1994)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Caldararu, A., Willerton, S.: The Mukai pairing, I: a categorical approach. arXiv:math/0707.2052 (2009)
  14. 14.
    Segal, G.: Lie groups. In: Carter, R., Segal, G., Macdonald, I. (eds.) Lectures on Lie Groups and Lie Algebras, vol. 32. London Mathematical Society, Student Texts (1995)Google Scholar
  15. 15.
    Cegarra, A.M., Garzón, A.R., Grandjean, A.R.: Graded extensions of categories. J. Pure Appl. Algebra 154, 117–141 (2000). http://www.ugr.es/ anillos/Preprints/total.ps MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Costello, K.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210(1), 165–214 (2007). arXiv:math/0412149 MATHMathSciNetGoogle Scholar
  17. 17.
    Crane, L., Yetter, D.N.: Measurable categories and 2-groups. Appl. Categ. Structures 13(5–6), 501–516 (2005). arXiv:math.QA/0305176 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Deligne, P.: Action du groupe des tresses sur une catégorie. Invent. Math. 128, 159–175 (1997)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Comm. Math. Phys. 129, 60–72 (1990)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Elgeueta, J.: Representation theory of 2-groups on Kapranov and Voevodsky’s 2-category 2Vect. Adv. Math. 213(1), 53–92 (2007) (arXiv:math/0408120v2)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. of Math. 162(2), 581–642 (2005). arXiv:math/0203060v9 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Fantechi, B., et al.: Fundamental Algebraic Geometry: Grothendieck’s FGA Explained, vol. 123. AMS Mathematical Surveys and Monographs. AMS, Providence (2006)Google Scholar
  23. 23.
    Freed, D.: Higher algebraic structures and quantization. Comm. Math. Phys. 159(2), 343–398 (1994)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Freed, D.: Quantum groups from path integrals. arXiv:q-alg/9501025 (2009)
  25. 25.
    Freed, D., Hopkins, M., Teleman, C.: Loop groups and twisted k-theory II. arXiv:math/0511232 (2009)
  26. 26.
    Freyd, P.J., Yetter, D.N.: Coherence theorems via knot theory. J. Pure Appl. Algebra 78, 49–76 (1992)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ganter, N., Kapranov, M.: Representation and character theory in 2-categories. Adv. Math. 217(5), 2268–2300 (2008). arXiv:math.KT/0602510 MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Grothendieck, A.: Catégories Fibrées et Descent (SGAI) Exposé VI. Lecture Notes in Mathematics, vol. 224, pp. 145–194. Springer, Berlin (1971)Google Scholar
  29. 29.
    Gurski, N.: An algebraic theory of tricategories. Ph.D. thesis, University of Chicago. http://gauss.math.yale.edu/~mg622/tricats.pdf (2006)
  30. 30.
    Kapranov, M.M., Voevodsky, V.A.: 2-categories and the Zamolodchikov tetradedra equations. In: Proceedings of Symposia in Pure Mathematics, vol. 56, pp. 177–259. American Mathematical Society, Providence (1994)Google Scholar
  31. 31.
    Kirwin, W.D.: Coherent states in geometric quantization. J. Geom. Phys. 57(2), 531–548 (2007). arXiv:math/0502026 MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lauda, A.: Frobenius algebras and planar open string topological field theories. arXiv:math/0508349 (2009)
  33. 33.
    Leinster, T.: Basic bicategories. arXiv:math.CT/9810017 (2009)
  34. 34.
    Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. Math. 88, 55–112 (1991)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Joyal, A., Street, R.: Braided monoidal categories. Preprint, revised and expanded version of Macquarie Mathematics Reports No. 860081, Preprint (1986)Google Scholar
  36. 36.
    Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Rend. Sem. Mat. Fis. Milano XLIII, 135–166 (1973); republished in Reprints in Theory Appl. Categ. (1), 1–37 (2002)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Moerdijk, I.: Introduction to the language of Stacks and Gerbes. arXiv:math.AT/0212266 (2009)
  38. 38.
    Morton, J.: Extended TQFT’s and quantum gravity. Ph.D. thesis, University of California Riverside. arXiv:0710.0032 (2007)
  39. 39.
    Müger, M.: From subfactors to categories and topology Frobenius, I., algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180, 81–157 (2003). arXiv:math/0111204 MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Murray, M., Singer, M.: Gerbes, Clifford modules and the index theorem. Ann. Global Anal. Geom. 26(4), 355–367 (2004). arXiv:math.DG/0302096 MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003). arXiv:math/0111139 MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Robinson, P.L., Rawnsley, J.H.: The metaplectic representation, Mp structures and geometric quantization. Mem. Amer. Math. Soc. 81(410) (1989)Google Scholar
  43. 43.
    Street, R.: Categorical structures. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 1, pp. 529–577. Elsevier, Amsterdam (1995)Google Scholar
  44. 44.
    Tu, J.-L., Xu, P., Laurent-Gengoux, C.: Twisted K-theory of differentiable Stacks. Ann. Sci. École Norm. Sup. (4) 37(6), 841–910 (2004). arXiv:math/0306138v2 MATHMathSciNetGoogle Scholar
  45. 45.
    Willerton, S.: The twisted Drinfeld double of a finite group via gerbes and finite groupoids. arXiv:math.QA/0503266 (2009)
  46. 46.
    Spera, M.: On Kählerian coherent states. In: Mladenov, I., Naber, G. (eds.) Proceedings of the International Conference on Geometry, Integrability and Quantization, Varna Bulgaria 1999, pp. 241–256. Coral, St Albans. www.bio21.bas.bg/proceedings/Proceedings_files/vol1content.htm (2000)
  47. 47.
    Woodhouse, N.M.J.: Geometric Quantization. Oxford Mathematical Monographs. Oxford University Press, Oxford (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.University of SheffieldSheffieldUK
  2. 2.Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations