Skip to main content
Log in

Homotopy Categories for Simply Connected Torsion Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

For each n > 1 and each multiplicative closed set of integers S, we study closed model category structures on the pointed category of topological spaces, where the classes of weak equivalences are classes of maps inducing isomorphism on homotopy groups with coefficients in determined torsion abelian groups, in degrees higher than or equal to n. We take coefficients either on all the cyclic groups \(\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} s}} \right. \kern-\nulldelimiterspace} s\) with sS, or in the abelian group \(\mathbb{C}{\left[ {S^{{ - 1}} } \right]} = {\mathbb{Z}{\left[ {S^{{ - 1}} } \right]}} \mathord{\left/ {\vphantom {{\mathbb{Z}{\left[ {S^{{ - 1}} } \right]}} \mathbb{Z}}} \right. \kern-\nulldelimiterspace} \mathbb{Z}\) where \(\mathbb{Z}{\left[ {S^{{ - 1}} } \right]}\) is the group of fractions of the form \(\frac{z}{s}\) with sS. In the first case, for n > 1 the localized category \({\user2{Ho}}{\left( {\mathcal{T}_{n} S - {\user2{Top}}*} \right)}\) is equivalent to the ordinary homotopy category of (n − 1)-connected CW-complexes whose homotopy groups are S-torsion. In the second case, for n > 1 we obtain that the localized category \({\user2{Ho}}{\left( {\mathcal{T}_{{\mathcal{D}_{n} }} S - {\user2{Top}}*} \right)}\) is equivalent to the ordinary homotopy category of (n − 1)-connected CW-complexes whose homotopy groups are S-torsion and the nth homotopy group is divisible. These equivalences of categories are given by colocalizations \(X^{{\mathcal{T}_{n} S}} \to X\), \(X^{{\mathcal{T}_{{\mathcal{D}_{n} }} S}} \to X\) obtained by cofibrant approximations on the model structures. These colocalization maps have nice universal properties. For instance, the map \(X^{{\mathcal{T}_{{\mathcal{D}_{n} }} S}} \to X\) is final (in the homotopy category) among all the maps of the form YX with Y an (n − 1)-connected CW-complex whose homotopy groups are S-torsion and its nth homotopy group is divisible. The spaces \(X^{{\mathcal{T}_{n} S}} \), \(X^{{\mathcal{T}_{{\mathcal{D}_{n} }} S}} \) are constructed using the cones of Moore spaces of the form M(T, k), where T is a coefficient group of the corresponding structure of models, and homotopy colimits indexed by a suitable ordinal. If S is generated by a set P of primes and S p is generated by a prime pP one has that for n > 1 the category \({\user2{Ho}}{\left( {\mathcal{T}_{n} S - {\user2{Top}}*} \right)}\) is equivalent to the product category \(\Pi _{{p \in P}} {\user2{Ho}}{\left( {\mathcal{T}_{n} S^{p} - {\user2{Top}}*} \right)}\). If the multiplicative system S is generated by a finite set of primes, then localized category \({\user2{Ho}}{\left( {\mathcal{T}_{{\mathcal{D}_{n} }} S - {\user2{Top}}*} \right)}\) is equivalent to the homotopy category of n-connected Ext-S-complete CW-complexes and a similar result is obtained for \({\user2{Ho}}{\left( {\mathcal{T}_{n} S - {\user2{Top}}*} \right)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kan, D. M., Bousfield, A. K.: Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics, no. 304, Springer, 1972.

  2. Bousfield, A. K.: The localization of spaces with respect to homology, Topology 14 (1975), 133–150.

    Article  MATH  MathSciNet  Google Scholar 

  3. Casacuberta, C., Hernández, L. J., Rodríguez, J. L.: Models for torsion homotopy types, Isr. J. Math. 107 (1998), 301–318.

    Article  MATH  Google Scholar 

  4. Dwyer, W. G., Spalinski, J.: Homotopy Theories and Model Categories, Handbook of Algebraic Topology, pp. 73–126, Elsevier Science B. V., Amsterdam, 1995.

    Google Scholar 

  5. Dwyer, W. G., Hirschhorn, P. S., Kan, D. M.: Model Categories and More General Abstract Homotopy Theory I, II, preprints, 1997, 2000.

  6. Extremiana, J. I., Hernández, L. J., Rivas, M. T.: A closed model category for (n − 1)-connected spaces, Proc. Amer. Math. Soc. 124 (1996), 3545–3553.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dror Farjoun, E.: Cellular Spaces, Null Spaces and Homotopy Localization, Lect. Notes in Math., no. 1622, Springer, Berlin Heidelberg New York, 1995.

    Google Scholar 

  8. Goerss, P. G., Jardine, J. F.: Simplicial Homotopy Theory, Progress in Mathematics, no. 174, Birkhäuser Verlag, Basel-Boston-Berlin, 1999.

    Google Scholar 

  9. Hernández, L. J.: Closed model categories for uniquely S-divisible spaces, J. Pure Appl. Algebra 182 (2003), 223–237.

    Article  MATH  MathSciNet  Google Scholar 

  10. Hilton, P. J.: Homotopy Theory and Duality, Gordon and Breach, New York, 1965.

    Google Scholar 

  11. Hirschhorn, P. S.: Model categories and their localizations, Mathematical Surveys and Monographs, Vol. 99, Am. Math. Soc., 2003.

  12. Hovey, M.: Model categories, Mathematical Surveys and Monographs, vol. 63, Am. Math. Soc., 1999.

  13. Joyal, A.: Homotopy theory of simplicial sheaves, umpublished (circulated as a letter to Grothendieck dated 11 April 1984.).

  14. Kulikov, L.: On the theory of abelian groups of arbitrary cardinality, Mat. Sb. 16 (1945), 129–162.

    Google Scholar 

  15. Neisendorfer, J.: Primary Homotopy Theory, vol. 25, Mem. Amer. Math. Soc., no. 232, AMS, Providence, Rhode Island, 1980.

    Google Scholar 

  16. Mislin G., Hilton P., Roitberg, J.: Localization of Nilpotent Groups and Spaces, North-Holland, Amsterdam, 1975.

    MATH  Google Scholar 

  17. Quillen, D. G., Homotopical Algebra, Lect. Notes in Math., no. 43, Springer, Berlin Heidelberg New York, 1967.

    Google Scholar 

  18. Quillen, D.: Rational homotopy theory, Ann. Math. 90 (1969), 205–295.

    Article  MathSciNet  Google Scholar 

  19. Serre, J.-P.: Groupes d’homotopie et classes de groupes abéliens, Ann. Math. 58 (1953), 258–294.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Javier Hernández Paricio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paricio, L.J.H. Homotopy Categories for Simply Connected Torsion Spaces. Appl Categor Struct 13, 421–451 (2005). https://doi.org/10.1007/s10485-005-9002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-005-9002-7

Key words

Mathematics Subject Classifications (2001)

Navigation