Abstract
We introduce a notion of a subtractive category. It generalizes the notion of a pointed subtractive variety of universal algebras in the sense of A. Ursini. Subtractive categories are closely related to Mal’tsev and additive categories: (i) a category C with finite limits is a Mal’tsev category if and only if for every object X in C the category Pt(X)=((X,1X)↓(C↓X)) of “points over X” is subtractive; (ii) a pointed category C with finite limits is additive if and only if C is subtractive and half-additive.
This is a preview of subscription content, access via your institution.
References
Abbott, J. C.: Implication algebras, Bull. Math. Soc. Sci. Math. R. S. Roumanie 11(59) (1967), 3–23.
Agliano, P. and Ursini, A.: On subtractive varieties II: General properties, Algebra Universalis 36 (1996), 222–259.
Agliano, P. and Ursini, A.: On subtractive varieties III: From ideals to congruences, Algebra Universalis 37 (1997), 296–333.
Agliano, P. and Ursini, A.: On subtractive varieties IV: Definability of principal ideals, Algebra Universalis 38 (1997), 355–389.
Borceux, F. and Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, Math. Appl. 566, Kluwer, 2004.
Bourn, D.: Mal’cev categories and fibration of pointed objects, Appl. Categ. Structures 4 (1996), 307–327.
Bourn, D.: Intrinsic centrality and associated classifying properties, J. Algebra 256 (2002), 126–145.
Carboni, A., Lambek, J. and Pedicchio, M. C.: Diagram chasing in Mal’cev categories, J. Pure Appl. Algebra 69 (1990), 271–284.
Carboni, A., Pedicchio, M. C. and Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories, CMS Conference Proceedings (Category Theory 1991) 13 (1992), 97–109.
Freyd, P. and Scedrov, A.: Categories, Allegories, North-Holland Math. Library 39, North-Holland, 1990.
Janelidze, G., Márki, L. and Tholen, W.: Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), 367–386.
Janelidze, Z.: Characterization of pointed varieties of universal algebras with normal projections, Theory Appl. Categ. 11(9) (2003), 212–214.
Janelidze, Z.: Varieties of universal algebras with normal local projections, Georgian Math. J. 11(1) (2004), 93–98.
Jónsson, B. and Tarski, A.: Direct Decompositions of Finite Algebraic Systems, Notre Dame Math. Lectures, Notre Dame, IN, 1947.
Smith, J. D. H.: Mal’cev Varieties, Lecture Notes in Math. 554, 1976.
Ursini, A.: On subtractive varieties, I, Algebra Universalis 31 (1994), 204–222.
Ursini, A.: On subtractive varieties, V: Congruence modularity and the commutators, Algebra Universalis 43 (2000), 51–78.
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classifications (2000)
18C99, 18E05, 08B05.
Rights and permissions
About this article
Cite this article
Janelidze, Z. Subtractive Categories. Appl Categor Struct 13, 343–350 (2005). https://doi.org/10.1007/s10485-005-0934-8
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10485-005-0934-8