Skip to main content
Log in

Comparison of Biofeedback and Combined Interventions on Athlete’s Performance

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

The aim of this study was the comparison of neurofeedback and biofeedback as a combination, against biofeedback intervention alone on athletic performance. 45 novice basketball players were allocated into three groups and assigned accordingly, two experimental and one control group. The experimental group 1 received 24 biofeedback sessions only, experimental group 2 received 24 biofeedback and neurofeedback sessions combined, whereas the control group didn’t receive any form of intervention. Athletic performance scales were used before and after each intervention and multivariate analysis of covariance was used to compare the two groups. Results showed that in comparison to the control group, the athletic performance scales scores in both experimental groups were significantly increased. Furthermore, in experimental group 2 (combined method), we noticed a significantly greater improvement in performance levels than experimental group 1. We concluded that neurofeedback and biofeedback interventions combined, can be used as an effective method to enhance athletic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blankertz, B., Sannelli, C., Halder, S., Hammer, E. M., Kübler, A., Müller, K. R., & Dickhaus, T. (2010). Neurophysiological predictor of SMR-based BCI performance. NeuroImage, 51(4), 1303–1309. https://doi.org/10.1016/j.neuroimage.2010.03.022.

    Article  PubMed  Google Scholar 

  • Blumenstein, B., Bar-Eli, M., & Tenenbaum, G. (1997). A five-step approach to mental training incorporating biofeedback. The Sport Psychologist, 11, 440–453.

    Article  Google Scholar 

  • Blumenstein, B., Bar-Eli, M., & Tenenbaum, G. (2002). Brain and body in sport and exercise: Biofeedback applications in performance enhancement. Sussex, UK: Wiley.

    Google Scholar 

  • Carlstedt, R. A. (2018). Psychologically mediated heart rate variability during official competition. In R. Carlstedt & M. Balconi (Eds.), Handbook of sport neuroscience and psychophysiology. New York: Routledge.

    Chapter  Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193–199.

    Article  Google Scholar 

  • Chen, T. T., Wang, K. P., Cheng, M. Y., Chang, Y. T., Huang, C. J., & Hung, T. M. (2019). Impact of emotional and motivational regulation on putting performance: A frontal alpha asymmetry study. PeerJ, 7, e6777. https://doi.org/10.7717/peerj.6777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, M. Y., Wang, K. P., Hung, C. L., Tu, Y. L., Huang, C. J., Dirk, K., & Hung, T. M. (2017). Higher power of sensorimotor rhythm is associated with better performance in skilled air-pistol shooters. Psychology of Sport and Exercise, 32, 47–53.

    Article  Google Scholar 

  • Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–49. https://doi.org/10.1016/j.biopsycho.2004.03.00.

    Article  PubMed  Google Scholar 

  • Coan, J. A., Allen, J. J. B., & McKnight, P. E. (2006). A capability model of individual differences in frontal EEG asymmetry. Biological Psychology, 72(2), 198–207. https://doi.org/10.1016/j.biopsycho.2005.10.003.

    Article  PubMed  Google Scholar 

  • Collins, D., & McPherson, A. (2006). The psychophysiology of biofeedback and sport performance. In E. O. Acevedo & P. Ekkekakis (Eds.), Psychobiology of physical activity (pp. 241–250). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Connaughton, D., Wadey, R., Hanton, S., & Jones, G. (2008). The development and maintenance of mental toughness: Perceptions of elite performers. Journal of Sports Sciences, 26, 83–95.

    Article  Google Scholar 

  • Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47(1), 65–74. https://doi.org/10.1016/S0167-8760(02)00107-1.

    Article  PubMed  Google Scholar 

  • Crews, D. J., Lochbaum, M. R., & Karoly, P. (2001). Self-regulation: Concepts, methods, and strategies in sport and exercise. In R. Singer, H. Hausenblas, & C. Janelle (Eds.), Handbookof sport psychology (pp. 566–581). New York: John Wiley & Sons.

    Google Scholar 

  • Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from affective neuroscience. Annual Review of Psychology, 53, 545–574.

    Article  Google Scholar 

  • Del Percio, C., Iacoboni, M., Lizio, R., Marzano, N., Infarinato, F., Vecchio, F., & Babiloni, C. (2011). Functional coupling of parietal alpha rhythms is enhanced in athletes before visuomotor performance: A coherence electroencephalographic study. Neuroscience, 175, 198–211. https://doi.org/10.1016/j.neuroscience.2010.11.031.

    Article  PubMed  Google Scholar 

  • Di Russo, F., Pitzalis, S., Aprile, T., & Spinelli, D. (2005). Effect of practice on brain activity: An investigation in top-level rifle shooters. Medicine and Science in Sports and Exercise, 37(9), 1586–1593. https://doi.org/10.1249/01.mss.0000177458.71676.0d.

    Article  PubMed  Google Scholar 

  • Doppelmayr, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. Journal of Neurotherapy, 15(2), 115–129. https://doi.org/10.1080/10874208.2011.570689.

    Article  Google Scholar 

  • Egner, T., & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport, 12(18), 4155–4159. https://doi.org/10.1097/00001756-200112210-00058.

    Article  PubMed  Google Scholar 

  • Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131–139. https://doi.org/10.1016/S1388-2457(03)00353-5.

    Article  PubMed  Google Scholar 

  • Gruzelier, J. H., Egner, T., & Vernon, D. J. (2006). Validating the efficacy of neurofeedback for optimising performance. Progress in Brain Research, 159, 421–431. https://doi.org/10.1016/S0079-6123(06)59027-2.

    Article  PubMed  Google Scholar 

  • Gruzelier, J. H., Inoue, A., Smart, R., Steed, A., & Steffert, T. (2010). Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neuroscience Letters, 480(2), 112–116. https://doi.org/10.1016/j.neulet.2010.06.019.

    Article  PubMed  Google Scholar 

  • Hanin, Y. (2000). Individual zones of optimal functioning (IZOF) model: Emotion–performance relationships in sport. In Y. Hanin (Ed.), Emotions in sport (pp. 65–89). Champaign, IL: Human Kinetics.

    Chapter  Google Scholar 

  • Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology Biofeedback, 30(1), 1–10. https://doi.org/10.1007/s10484-005-2169-8.

    Article  PubMed  Google Scholar 

  • Hatfield, B., Haufler, A., & Spalding, T. (2006). A cognitive neuroscience perspective on sport performance. In E. O. Acevedo & P. Ekkekakis (Eds.), Psychobiology of physical activity (pp. 221–240). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Hatfield, B. D., & Hillman, C. H. (2001). The psychophysiology of sport: A mechanistic understanding of the psychology of superior performance. In R. N. Singer, H. A. Hausenblas, & C. M. Janelle (Eds.), Handbook of sport psychology (2nd ed., pp. 362–388). New York: Wiley.

    Google Scholar 

  • Hoedlmoser, K., Pecerstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401–1408. https://doi.org/10.5665/sleep/31.10.1401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini, S. A., & Naghibi-Sistani, M. (2011). Classification of emotional stress using brain activity. Applied Biomedical Engineering, 7, 32–41.

    Google Scholar 

  • Hung, T. M., & Cheng, M. Y. (2018). Neurofeedback in sport. In R. A. Carlstedt & M. Balconi (Eds.), Handbook of sport neuroscience and psychophysiology (pp. 304–319). New York: Routledge.

    Chapter  Google Scholar 

  • Janelle, C. M. (2002). Anxiety, arousal and visual attention: A mechanistic account of performance variability. Journal of Sports Sciences, 20, 237–251.

    Article  Google Scholar 

  • Janelle, C. M., Singer, R. N., & Williams, A. M. (1999). External distraction and attentional narrowing: Visual search evidence. Journal of Sport & Exercise Psychology, 21(1), 70–91.

    Article  Google Scholar 

  • Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2010.00186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kao, S. C., Huang, C. J., & Hung, T. M. (2014). Neurofeedback training reduces frontal midline theta and improves putting performance in expert golfers. Journal of Applied Sport Psychology, 26(3), 271–286. https://doi.org/10.1080/10413200.2013.855682.

    Article  Google Scholar 

  • Klimesch, W. (1996). Memory processes brain oscilliations and EEG synchronization memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 43(1–2), 61–100.

    Article  Google Scholar 

  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003.

    Article  PubMed  Google Scholar 

  • Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2013.00695.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kober, S. E., Witte, M., Stangl, M., Väljamäe, A., Neuper, C., & Wood, G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126(1), 82–95. https://doi.org/10.1016/j.clinph.2014.03.031.

    Article  PubMed  Google Scholar 

  • Krane, V., & Williams, J. M. (2014). Psychological characteristics of peak performance. In J. M. Williams & V. Krane (Eds.), Applied sport psychology: Personal growth to peak performance (7th ed., pp. 159–175). New York: McGraw-Hill.

    Google Scholar 

  • Lee, S. T., Choi, H. M., & Kim, W. S. (2012). Evaluation of biomedical signals data from moviegoers. Computational Intelligence and Neuroscience, 8, 22–32.

    Google Scholar 

  • Lubar, J. F. (2003). Neurofeedback for the management of attention deficit disorders. In M. S. Schwartz & F. Andrasik (Eds.), Biofeedback: A practitioner’s guide (3rd ed., pp. 409–437). New York: Guilford Press.

    Google Scholar 

  • Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O’Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A., scores, behavioral ratings, and WISC-R performance. Biofeedback & Self-Regulation, 20, 83–99.

    Article  Google Scholar 

  • Murugappan, M., Rizon, M., Nagarajan, R., & Yaacob, S. (2009). FCM clustering of human emotions using wavelet based features from EEG. Biomedical Soft Computing and Human Sciences, 14, 35–40.

    Google Scholar 

  • Murugappan, M., Rizon, M., Nagarajan, R., & Yaacob, S. (2010). Inferring of human emotional states using multichannel EEG. European Journal of Scientific Research, 48, 281–299.

    Google Scholar 

  • Ogrim, G., Kropotov, J., & Hestad, K. (2012). The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: Sensitivity, specificity, and behavioral correlates. Psychiatry Research, 198(3), 482–488. https://doi.org/10.1016/j.psychres.2011.12.041.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2–3), 65–68. https://doi.org/10.1016/S0304-3940(97)00889-6.

    Article  PubMed  Google Scholar 

  • Raglin, J. S. (2001). Psychological factors in sport performance: The mental health model revisited. Sports Medicine, 31(12), 875–890.

    Article  Google Scholar 

  • Rajabi, H., Zarifi, A., & Shahintab, M. (2010). Description of the fitness and skill profile of elite basketball players in Iran. Olympic Quarterly, 49, 31–43.

    Google Scholar 

  • Ravizza, K. (2006). Increasing awareness for sport performance. In J. M. Williams (Ed.), Applied sport psychology: Personal growth to peak performance (5th ed., pp. 228–239). New York: McGraw-Hill.

    Google Scholar 

  • Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7, 367–379.

    Article  Google Scholar 

  • Reis, J., Portugal, A. M., Fernandes, L., Afonso, N., Pereira, M., Sousa, N., & Dias, N. S. (2016). An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Frontiers in Aging Neuroscience, 8, 157. https://doi.org/10.3389/fnagi.2016.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reznik, S. J., & Allen, J. J. B. (2018). Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology, 55, e12965. https://doi.org/10.1111/psyp.12965.

    Article  Google Scholar 

  • Riecansky, I., & Katina, S. (2010). Induced EEG alpha oscillations are related to mental rotation ability: The evidence for neural efficiency and serial processing. Neuroscience Letters, 482(2), 133–136. https://doi.org/10.1016/j.neulet.2010.07.017.

    Article  PubMed  Google Scholar 

  • Rogers, T. J., Alderman, B. L., & Landers, D. M. (2003). Effects of life-event stress and hardiness on peripheral vision in a real-life stress situation. Behavioral Medicine, 29, 21–26.

    Article  Google Scholar 

  • Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10, 87. https://doi.org/10.1186/1471-2202-10-87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvador, A., Suay, F., González-Bono, E., & Serrano, M. A. (2003). Anticipatory cortisol, testosterone and psychological responses to judo competition in young men. Psychoneuroendocrinology, 27, 364–376.

    Article  Google Scholar 

  • Shaw, L., Zaichkowsky, L., & Wilson, V. (2012). Setting the balance: Using biofeedback and neurofeedback with gymnasts. Journal of Clinical Sport Psychology, 6(1), 47–66.

    Article  Google Scholar 

  • Singer, R. N. (2000). Performance and human factors: Considerations about cognition and attention for self-paced and externally paced events. Ergonomics, 43, 1661–1680.

    Article  Google Scholar 

  • Smith, E. E., Reznik, S. J., Stewart, J. L., & Allen, J. J. B. (2016). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 111, 98–114. https://doi.org/10.1016/j.ijpsycho.2016.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stall, M. A. (2004). Stress, cognition, and human performance: a literature review and conceptual framework. NASA Technical Memorandum. Retrieved from https://ntrs.nasa.gov/search.jsp?R=20060017835.

  • Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation, 21(1), 3–33. https://doi.org/10.1007/BF02214147.

    Article  PubMed  Google Scholar 

  • Strack, B. W., & Gevirtz, R. (2011). Getting to the heart of the matter: Heart rate variability biofeedback for enhanced performance. In B. W. Strack, M. K. Linden, & V. E. Wilson (Eds.), Biofeedback & neurofeedback application in sport psychology (pp. 145–173). Wheat Ridge: Association for Applied Psychophysiology & Biofeedback.

    Google Scholar 

  • Sullivan, R. M., & Gratton, A. (2002). Prefrontal cortical regulation of hypothalamic-pituitary adrenal function in the rat and implications for psychopathology: Side matters. Psychoneuroendocrinology, 27(1–2), 99–114.

    Article  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). Boston: Pearson Education.

    Google Scholar 

  • Thayer, J. F., & Lane, R. D. (2000). A model of neurovascular integration in emotionregulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216.

    Article  Google Scholar 

  • Tinius, T. P., & Tinius, K. A. (2000). Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder. Journal of Neurotherapy, 4(2), 27–44. https://doi.org/10.1300/J184v04n02_05.

    Article  Google Scholar 

  • Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Applied Psychophysiology Biofeedback, 30(4), 347–364. https://doi.org/10.1007/s10484-005-8421-4.

    Article  PubMed  Google Scholar 

  • Vernon, D. J., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. H. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75–85. https://doi.org/10.1016/S0167-8760(02)00091-0.

    Article  PubMed  Google Scholar 

  • Wilson, V. S., Sime, W. E., & Harkness, T. (2016). Sports. In M. Schwartz & F. Andrasik (Eds.), Biofeedback: A practitioner’s guide (4th ed., pp. 607–626). New York: Guilford Press.

    Google Scholar 

  • Wong, S. W., Masse, N., Kimmerly, D. S., Menon, R. S., & Shoemaker, J. K. (2007). Ventral medial prefrontal cortex and cardiovagal control in conscious humans. Neuroimaging, 35(2), 698–708.

    Article  Google Scholar 

  • Yuan, K., Steedle, J., Shavelson, R., Alonzo, A., & Oppezzo, M. (2006). Working memory, fluid intelligence, and science learning. Educational Research Review, 1, 83–98.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Salma Golchin for her work on the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Shokri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri, A., Nosratabadi, M. Comparison of Biofeedback and Combined Interventions on Athlete’s Performance. Appl Psychophysiol Biofeedback 46, 227–234 (2021). https://doi.org/10.1007/s10484-020-09498-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-020-09498-5

Keywords

Navigation