Abstract
Current mental healthcare systems experience difficulties meeting the challenges of a growing population with elevated stress symptoms. Outpatient stress management interventions have already proven to be effective in routine care and recent technological advances now allow to expand such interventions, for example by adding a physiological component like biofeedback. Adding biofeedback to stress management interventions appears promising, but there is a lack of insight into the general conceptualization and evaluation of the resulting interventions, both in relation to psychological and physiological stress indicators. A comprehensive literature search was performed to investigate stress management interventions with a biofeedback component. This systematic review provides an overview of these interventions and explores to what extent they can improve both physiological and psychological indicators of stress. Fourteen RCTs were included. A large diversity was observed in intervention design and effectiveness. Nevertheless, there is preliminary evidence that the use of biofeedback can improve both physiological and psychological indicators of stress. Biofeedback could provide an accessible and low-cost addition to stress interventions. Further research into the effectiveness of different components of biofeedback interventions is needed.
This is a preview of subscription content, access via your institution.

References
Allen, J. K., & Blanchard, E. B. (1980). Biofeedback-based stress management training with a population of business managers. Biofeedback and Self-Regulation, 5(4), 427–438.
American Psychiatric Association. (2016). Stress in America: the impact of discrimination. Stress in America™ Survey.
American Psychological Association. (2017). Stress in America: The State of Our Nation. Stress in America™ Survey.
Bali, A., & Jaggi, A. S. (2015). Clinical experimental stress studies: methods and assessment. Reviews in the Neurosciences, 26(5), 555–579. https://doi.org/10.1515/revneuro-2015-0004.
Berry, M. E., Chapple, I. T., Ginsberg, J. P., Gleichauf, K. J., Meyer, J. A., & Nagpal, M. L. (2014). Non-pharmacological Intervention for chronic pain in veterans: A pilot study of heart rate variability biofeedback. Global Advances in Health and Medicine, 3(2), 28–33. https://doi.org/10.7453/gahmj.2013.075.
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 267(9), 1244–1252.
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385–396.
Cooper, C., & Dewe, P. (2008). Well-being—Absenteeism, presenteeism, costs and challenges. Occupational Medicine, 58(8), 522–524. https://doi.org/10.1093/occmed/kqn124.
Cropley, M., Plans, D., Morelli, D., Sütterlin, S., Inceoglu, I., Thomas, G., & Chu, C. (2017). The association between work-related rumination and heart rate variability: A field study. Frontiers in Human Neuroscience, 11, 27. https://doi.org/10.3389/fnhum.2017.00027.
De Witte, N. A. J., Bonroy, B., Debard, G., Sels, R., & Van Daele, T. (2018). Carewear: An internet-based platform to implement wearable technology in mental health care. Paper presented at the conferene of the European Society for Research on Internet Interventions, Dublin.
Dillon, A., Kelly, M., Robertson, I. H., & Robertson, D. A. (2016). Smartphone applications utilizing biofeedback can aid stress reduction. Frontiers in Psychology, 7, 832. https://doi.org/10.3389/fpsyg.2016.00832.
Gaggioli, A., Cipresso, P., Serino, S., Campanaro, D. M., Pallavicini, F., Wiederhold, B. K., & Riva, G. (2014). Positive technology: A free mobile platform for the self-management of psychological stress. Studies in Health Technology and Informatics, 199, 25–29.
Hallman, D. M., Olsson, E. M., von Schéele, B., Melin, L., & Lyskov, E. (2011). Effects of heart rate variability biofeedback in subjects with stress-related chronic neck pain: A pilot study. Applied Psychophysiology and Biofeedback, 36(2), 71–80. https://doi.org/10.1007/s10484-011-9147-0.
Higgins, J. P., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., … Group, C. S. M. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ, 343, d5928. https://doi.org/10.1136/bmj.d5928.
Hoffmann, A., Christmann, C. A., & Bleser, G. (2017). Gamification in stress management apps: A critical app review. JMIR Serious Games, 5(2), e13. https://doi.org/10.2196/games.7216.
Istepanian, R., Jovanov, E., & Zhang, Y. T. (2004). Introduction to the special section on M-Health: Beyond seamless mobility and global wireless health-care connectivity. IEEE Transactions on Information Technology in Biomedicine, 8(4), 405–414.
Jarczok, M., Jarczok, M., Mauss, D., Koenig, J., Li, J., Herr, R., & Thayer, J. (2013). Autonomic nervous system activity and workplace stressors-A systematic review. Neuroscience and Biobehavioral Reviews, 37(8), 1810–1823. https://doi.org/10.1016/j.neubiorev.2013.07.004.
Kotozaki, Y., Takeuchi, H., Sekiguchi, A., Yamamoto, Y., Shinada, T., Araki, T., … Kawashima, R. (2014). Biofeedback-based training for stress management in daily hassles: An intervention study. Brain and Behavior, 4(4), 566–579. https://doi.org/10.1002/brb3.241.
Lemaire, J. B., Wallace, J. E., Lewin, A. M., de Grood, J., & Schaefer, J. P. (2011). The effect of a biofeedback-based stress management tool on physician stress: A randomized controlled clinical trial. Open Medicine, 5(4), e154–e163.
Lin, H., Lin, H., Lin, W., & Huang, A. (2011). Effects of stress, depression, and their interaction on heart rate, skin conductance, finger temperature, and respiratory rate: Sympathetic-parasympathetic hypothesis of stress and depression. Journal of Clinical Psychology, 67(10), 1080–1091. https://doi.org/10.1002/jclp.20833.
Lovibond, S. H., & Lovibond, P. F. (1995). Manual for the depression anxiety stress scales, 2nd ed. Sydney: Psychology Foundation.
Mackay, A. M., Buckingham, R., Schwartz, R. S., Hodgkinson, S., Beran, R. G., & Cordato, D. J. (2015). The effect of biofeedback as a psychological intervention in multiple sclerosis: A randomized controlled study. International Journal of MS Care, 17(3), 101–108. https://doi.org/10.7224/1537-2073.2014-006.
Marcus, S. M., Stuart, E. A., Wang, P., Shadish, W. R., & Steiner, P. M. (2012). Estimating the causal effect of randomization versus treatment preference in a doubly randomized preference trial. Psychological Methods, 17(2), 244–254. https://doi.org/10.1037/a0028031.
McCraty, R., Atkinson, M., Lipsenthal, L., & Arguelles, L. (2009). New hope for correctional officers: An innovative program for reducing stress and health risks. Applied Psychophysiology and Biofeedback, 34(4), 251–272. https://doi.org/10.1007/s10484-009-9087-0.
Munos, B., Baker, P. C., Bot, B. M., Crouthamel, M., de Vries, G., Ferguson, I., … Wang, P. (2016). Mobile health: The power of wearables, sensors, and apps to transform clinical trials. Annals of the New York Academy of Sciences, 1375(1), 3–18. https://doi.org/10.1111/nyas.13117.
Munster-Segev, M., Fuerst, O., Kaplan, S. A., & Cahn, A. (2017). Incorporation of a stress reducing mobile app in the care of patients with type 2 diabetes: A prospective study. JMIR mHealth uHealth, 5(5), e75. https://doi.org/10.2196/mhealth.7408.
Murphy, L. R. (1984). Stress management in highway maintenance workers. Journal of Occupational Medicine, 26(6), 436–442.
Nolan, R. P., Kamath, M. V., Floras, J. S., Stanley, J., Pang, C., Picton, P., & Young, Q. R. (2005). Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. American Heart Journal, 149(6), 1137. https://doi.org/10.1016/j.ahj.2005.03.015.
Schoenberg, P. L., & David, A. S. (2014). Biofeedback for psychiatric disorders: A systematic review. Applied Psychophysiology and Biofeedback, 39(2), 109–135. https://doi.org/10.1007/s10484-014-9246-9.
Schoneveld, E. A., Lichtwarck-Aschoff, A., & Granic, I. (2017). Preventing childhood anxiety disorders: Is an applied game as effective as a cognitive behavioral therapy-based program? Prevention Science. https://doi.org/10.1007/s11121-017-0843-8.
Siepmann, M., Hennig, U. D., Siepmann, T., Nitzsche, K., Mück-Weymann, M., Petrowski, K., & Weidner, K. (2014). The effects of heart rate variability biofeedback in patients with preterm labour. Applied Psychophysiology and Biofeedback, 39(1), 27–35. https://doi.org/10.1007/s10484-013-9238-1.
Sutarto, A. P., Wahab, M. N., & Zin, N. M. (2012). Resonant breathing biofeedback training for stress reduction among manufacturing operators. International Journal of Occupational Safety and Ergonomics, 18(4), 549–561. https://doi.org/10.1080/10803548.2012.11076959.
Teufel, M., Stephan, K., Kowalski, A., Käsberger, S., Enck, P., Zipfel, S., & Giel, K. E. (2013). Impact of biofeedback on self-efficacy and stress reduction in obesity: A randomized controlled pilot study. Applied Psychophysiology and Biofeedback, 38(3), 177–184. https://doi.org/10.1007/s10484-013-9223-8.
Uddin, A. A., Morita, P. P., Tallevi, K., Armour, K., Li, J., Nolan, R. P., & Cafazzo, J. A. (2016). Development of a wearable cardiac monitoring system for behavioral neurocardiac training: A usability study. JMIR mHealth uHealth, 4(2), e45. https://doi.org/10.2196/mhealth.5288.
Van Daele, T., Hermans, D., Van Audenhove, C., & Van den Bergh, O. (2012). Stress reduction through psychoeducation: A meta-analytic review. Health Education & Behavior, 39(4), 474–485. https://doi.org/10.1177/1090198111419202.
Villarejo, M. V., Zapirain, B. G., & Zorrilla, A. M. (2012). A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors (Basel), 12(5), 6075–6101. https://doi.org/10.3390/s120506075.
Wheat, A. L., & Larkin, K. T. (2010). Biofeedback of heart rate variability and related physiology: A critical review. Applied Psychophysiology and Biofeedback, 35(3), 229–242. https://doi.org/10.1007/s10484-010-9133-y.
Whited, A., Larkin, K. T., & Whited, M. (2014). Effectiveness of emWave biofeedback in improving heart rate variability reactivity to and recovery from stress. Applied Psychophysiology and Biofeedback, 39(2), 75–88. https://doi.org/10.1007/s10484-014-9243-z.
Williams, A. D. (2016). Harnessing the quantified self-movement for optimal mental health and wellbeing. Paper presented at the LTA, Amsterdam.
Acknowledgements
This work was written within the Carewear project, funded by a VLAIO TETRA grant (Grants IWT.150614 and HBC.2016.0099).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
De Witte, N.A.J., Buyck, I. & Van Daele, T. Combining Biofeedback with Stress Management Interventions: A Systematic Review of Physiological and Psychological Effects. Appl Psychophysiol Biofeedback 44, 71–82 (2019). https://doi.org/10.1007/s10484-018-09427-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10484-018-09427-7
Keywords
- Biofeedback
- Stress reduction
- mHealth
- Effectiveness
- Heart rate variability