Advertisement

Applied Psychophysiology and Biofeedback

, Volume 42, Issue 2, pp 127–132 | Cite as

Objectively-Measured Free-Living Physical Activity and Heart Rate Recovery

  • Brittany R. Counts
  • Jeremy P. Loenneke
  • Paul D. LoprinziEmail author
Article

Abstract

The purpose of this study was to examine the association of free-living, objectively-measured physical activity on treadmill-based heart rate recovery (HRR), a parameter known to associate with morbidity and mortality. Data was used from 2003 to 2004 NHANES. Physical activity was assessed via accelerometry, with HRR recovery assessed from a treadmill-based test. Heart rate recovery minute 1 (HRR1) and minute 2 (HRR2) were calculated. After adjustment, light and vigorous-intensity free-living physical activity, respectively, were associated with HRR1adjusted = 0.69, 95% CI 0.22–1.14; βadjusted 1.94, 95% CI 0.01–3.9) and HRR2adjusted = 0.99, 95% CI 0.35–1.62; βadjusted = 5.88, 95% CI 2.63–9.12). Moderate physical activity was not associated with HRR1adjusted = 0.60, 95% CI −0.41 to 1.62), but was with HRR2adjusted = 2.28, 95% CI 1.27–3.28). As free-living physical activity intensity increased, there was a greater association with HRR. This finding may provide mechanistic insight of previous research observations demonstrating intensity-specific effects of physical activity on various health outcomes.

Keywords

Baroreflex sensitivity Vagal tone Autonomic nervous system Accelerometry 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aengevaeren, V. L., Claassen, J. A., Levine, B. D., & Zhang, R. (2013). Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes. Journal of Applied Physiology (Bethesda, Md. : 1985), 114(2), 195–202. doi: 10.1152/japplphysiol.00402.2012.CrossRefGoogle Scholar
  2. Albert, M. A., Glynn, R. J., & Ridker, P. M. (2004). Effect of physical activity on serum C-reactive protein. The American Journal of Cardiology, 93(2), 221–225.CrossRefPubMedGoogle Scholar
  3. Asthana, A., Piper, M. E., McBride, P. E., Ward, A., Fiore, M. C., Baker, T. B., & Stein, J. H. (2012). Long-term effects of smoking and smoking cessation on exercise stress testing: three-year outcomes from a randomized clinical trial. American Heart Journal, 163(1), 81–87 e81. doi: 10.1016/j.ahj.2011.06.023.CrossRefPubMedGoogle Scholar
  4. Barak, O. F., Ovcin, Z. B., Jakovljevic, D. G., Lozanov-Crvenkovic, Z., Brodie, D. A., & Grujic, N. G. (2011). Heart rate recovery after submaximal exercise in four different recovery protocols in male athletes and non-athletes. Journal of Sports Science and Medicine, 10(2), 369–375.PubMedPubMedCentralGoogle Scholar
  5. Bolter, C. P., Hughson, R. L., & Critz, J. B. (1973). Intrinsic rate and cholinergic sensitivity of isolated atria from trained and sedentary rats. Proceedings of the Society for Experimental Biology and Medicine, 144(1), 364–367.CrossRefPubMedGoogle Scholar
  6. Buemann, B., & Tremblay, A. (1996). Effects of exercise training on abdominal obesity and related metabolic complications. Sports Medicine (Auckland, N. Z.), 21(3), 191–212.CrossRefGoogle Scholar
  7. Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E., & Lauer, M. S. (1999). Heart-rate recovery immediately after exercise as a predictor of mortality. The New England Journal of Medicine, 341(18), 1351–1357. doi: 10.1056/NEJM199910283411804.CrossRefPubMedGoogle Scholar
  8. Coote, J. H. (2010). Recovery of heart rate following intense dynamic exercise. Experimental Physiology, 95(3), 431–440. doi: 10.1113/expphysiol.2009.047548.CrossRefPubMedGoogle Scholar
  9. Darr, K. C., Bassett, D. R., Morgan, B. J., & Thomas, D. P. (1988). Effects of age and training status on heart rate recovery after peak exercise. American Journal of Physiology, 254(2 Pt 2), H340–H343.Google Scholar
  10. Dhoble, A., Lahr, B. D., Allison, T. G., & Kopecky, S. L. (2014). Cardiopulmonary fitness and heart rate recovery as predictors of mortality in a referral population. Journal of the American Heart Association, 3(2), e000559. doi: 10.1161/JAHA.113.000559.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Du, N., Bai, S., Oguri, K., Kato, Y., Matsumoto, I., Kawase, H., & Matsuoka, T. (2005). Heart rate recovery after exercise and neural regulation of heart rate variability in 30–40 year old female marathon runners Journal of Sports Science and Medicine, 4(1), 9–17.PubMedPubMedCentralGoogle Scholar
  12. Esco, M. R., & Williford, H. N. (2013). Race influences the relationship between aerobic power and heart rate recovery. The Journal of Sports Medicine and Physical Fitness, 53, 583–587.PubMedGoogle Scholar
  13. Huang, C. J., Webb, H. E., Zourdos, M. C., & Acevedo, E. O. (2013). Cardiovascular reactivity, stress, and physical activity. Frontiers in Physiology, 4, 314. doi: 10.3389/fphys.2013.00314.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huikuri, H. V., Jokinen, V., Syvanne, M., Nieminen, M. S., Airaksinen, K. E., Ikaheimo, M. J., & Frick, M. H. (1999). Heart rate variability and progression of coronary atherosclerosis. ArterioSclerosis, Thrombosis, and Vascular Biology, 19(8), 1979–1985.CrossRefPubMedGoogle Scholar
  15. Imai, K., Sato, H., Hori, M., Kusuoka, H., Ozaki, H., Yokoyama, H., &. Kamada, T. (1994). Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. Journal of the American College of Cardiology, 24(6), 1529–1535.CrossRefPubMedGoogle Scholar
  16. Jackson, A. S., Blair, S. N., Mahar, M. T., Wier, L. T., Ross, R. M., & Stuteville, J. E. (1990). Prediction of functional aerobic capacity without exercise testing. Medicine and Science in Sports and Exercise, 22(6), 863–870.CrossRefPubMedGoogle Scholar
  17. Kwon, O., Park, S., Kim, Y. J., Min, S. Y., Kim, Y. R., Nam, G. B.,& Kim, Y. H. (2016). The exercise heart rate profile in master athletes compared to healthy controls. Clinical Physiology and Functional Imaging, 36(4), 286–292. doi: 10.1111/cpf.12226.CrossRefPubMedGoogle Scholar
  18. Lee, I. M., & Paffenbarger, R. S. Jr. (2000). Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard Alumni Health Study. American Journal of Epidemiology, 151(3), 293–299.CrossRefPubMedGoogle Scholar
  19. Loprinzi, P. D., Walker, J. F., & Lee, H. (2014). Association between physical activity and inflammatory markers among U.S. adults with chronic obstructive pulmonary disease. American Journal of Health Promotion: AJHP, 29(2), 81–88. doi: 10.4278/ajhp.130510-QUAN-235.CrossRefPubMedGoogle Scholar
  20. Nishime, E. O., Cole, C. R., Blackstone, E. H., Pashkow, F. J., & Lauer, M. S. (2000). Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA: The Journal of the American Medical Association, 284(11), 1392–1398.CrossRefPubMedGoogle Scholar
  21. Okutucu, S., Karakulak, U. N., Aytemir, K., & Oto, A. (2011). Heart rate recovery: A practical clinical indicator of abnormal cardiac autonomic function. Expert Review of Cardiovascular Therapy, 9(11), 1417–1430. doi: 10.1586/erc.11.149.CrossRefPubMedGoogle Scholar
  22. Otsuki, T., Maeda, S., Iemitsu, M., Saito, Y., Tanimura, Y., Sugawara, J., & Miyauchi, T. (2007). Postexercise heart rate recovery accelerates in strength-trained athletes. Medicine and Science in Sports and Exercise, 39(2), 365–370. doi: 10.1249/01.mss.0000241647.13220.4c.CrossRefPubMedGoogle Scholar
  23. Paffenbarger, R. S. Jr., Hyde, R. T., Wing, A. L., Lee, I. M., Jung, D. L., & Kampert, J. B. (1993). The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. The New England Journal of Medicine, 328(8), 538–545. doi: 10.1056/NEJM199302253280804.CrossRefPubMedGoogle Scholar
  24. Pecanha, T., Silva-Junior, N. D., & Forjaz, C. L. (2014). Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clinical Physiology and Functional Imaging, 34(5), 327–339. doi: 10.1111/cpf.12102.CrossRefPubMedGoogle Scholar
  25. Plotnikoff, R. C., Mayhew, A., Birkett, N., Loucaides, C. A., & Fodor, G. (2004). Age, gender, and urban-rural differences in the correlates of physical activity. Preventive Medicine, 39(6), 1115–1125. doi: 10.1016/j.ypmed.2004.04.024.CrossRefPubMedGoogle Scholar
  26. Snowling, N. J., & Hopkins, W. G. (2006). Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care, 29(11), 2518–2527. doi: 10.2337/dc06-1317.CrossRefPubMedGoogle Scholar
  27. Staiano, A. E., Reeder, B. A., Elliott, S., Joffres, M. R., Pahwa, P., Kirkland, S. A., & Katzmarzyk, P. T. (2012). Physical activity level, waist circumference, and mortality. Applied Physiology, Nutrition, and Metabolism, 37(5), 1008–1013. doi: 10.1139/h2012-058.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Steinhaus, L. A., Dustman, R. E., Ruhling, R. O., Emmerson, R. Y., Johnson, S. C., Shearer, D. E., & Bonekat, W. H. (1988). Cardio-respiratory fitness of young and older active and sedentary men. British Journal of Sports Medicine, 22(4), 163–166.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Trevizani, G. A., Benchimol-Barbosa, P. R., & Nada, J. (2012). Effects of age and aerobic fitness on heart rate recovery in adult men. Arquivos Brasileiros de Cardiologia, 99, 802–810.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Brittany R. Counts
    • 1
  • Jeremy P. Loenneke
    • 1
  • Paul D. Loprinzi
    • 1
    Email author
  1. 1.Department of Health, Exercise Science and Recreation ManagementThe University of MississippiUniversityUSA

Personalised recommendations