Skip to main content

Advertisement

Log in

Effects of Partial Absence of Visual Feedback Information on Gait Symmetry

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

The incorporation of real-time visual feedback during gait rehabilitation can improve the efficacy of training. Our prior work demonstrated that the imposed distortion of simple visual feedback information of step lengths entails an unintentional adaptive process in the subjects’ spatial gait pattern, thereby suggesting the important role of implicit learning in the context of gait rehabilitation that employs visual feedback. The purpose of this study was to investigate whether the removal of a portion of visual feedback information—after it had initially been provided—had any impact on gait symmetry. Eighteen healthy subjects walked on a treadmill for 10-min periods at their preferred walking speed and at a slower walking speed (1.3 mph) during the experimental trials, in which two simple vertical bars corresponding to subject’s right and left step length were displayed on a computer screen. Halfway through the trial, one of the bars was removed from the visual feedback via random selection. Subjects were instructed to continually walk normally and also look at the visual feedback until the trials were completed. The changes in step length symmetry ratio were computed and analyzed. We found that displaying only one side of visual feedback influenced subjects to spontaneously modulate gait symmetry away from the baseline, and also that the amount of modulated gait symmetry slightly increased when their walking speed decreased. The changes in gait symmetry occurred by producing either longer right steps produced than left steps or vice versa, but we were unable to find any correlation between side of removal (right or left side) and the different types of trend in response. This warrants further investigation in a study with a larger population. Nonetheless, the results of this study demonstrated the effect of partial absence of visual feedback on changes in step symmetry, and that the perturbation of visual information caused implicit (unintentional) motor processes. A gait training procedure involving a novel way of perturbing visual feedback, such as partial absence of visual feedback tested in this study, may be of value in gait rehabilitation by driving more efficient motor adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balasubramanian, C. K., Bowden, M. G., Neptune, R. R., & Kautz, S. A. (2007). Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Archives of Physical Medicine and Rehabilitation, 88(1), 43–49. doi:10.1016/j.apmr.2006.10.004.

    Article  PubMed  Google Scholar 

  • Bedford, F. L. (1999). Keeping perception accurate. Trends in Cognitive Sciences, 3(1), 4–11.

    Article  PubMed  Google Scholar 

  • Bronstein, A. M., Bunday, K. L., & Reynolds, R. (2009a). What the “broken escalator” phenomenon teaches us about balance. [Review]. Annals of the New York Academy of Sciences, 1164, 82–88. doi:10.1111/j.1749-6632.2009.03870.x.

    Article  PubMed  Google Scholar 

  • Bronstein, A. M., Bunday, K. L., & Reynolds, R. (2009b). What the “broken escalator” phenomenon teaches us about balance. Annals of the New York Academy of Sciences, 1164, 82–88.

    Article  PubMed  Google Scholar 

  • Cho, K. H., & Lee, W. H. (2013). Virtual walking training program using a real-world video recording for patients with chronic stroke: A pilot study. [Comparative Study Randomized Controlled Trial]. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 92(5), 371–380. doi:10.1097/PHM.0b013e31828cd5d3 (quiz 380–372, 458)

    Article  Google Scholar 

  • Crowell, H. P., Milner, C. E., Hamill, J., & Davis, I. S. (2010). Reducing impact loading during running with the use of real-time visual feedback. [Evaluation Studies]. The Journal of Orthopaedic and Sports Physical Therapy, 40(4), 206–213. doi:10.2519/jospt.2010.3166.

    Article  PubMed  Google Scholar 

  • Hendrickson, J., Patterson, K. K., Inness, E. L., McIlroy, W. E., & Mansfield, A. (2014). Relationship between asymmetry of quiet standing balance control and walking post-stroke. [Research Support, Non-U.S. Gov’t]. Gait & Posture, 39(1), 177–181. doi:10.1016/j.gaitpost.2013.06.022.

    Article  Google Scholar 

  • Hornby, T. G., Campbell, D. D., Kahn, J. H., Demott, T., Moore, J. L., & Roth, H. R. (2008). Enhanced gait-related improvements after therapist-versus robotic-assisted locomotor training in subjects with chronic stroke: A randomized controlled study. Stroke; A Journal of Cerebral Circulation, 39(6), 1786–1792.

    Article  Google Scholar 

  • Jorgensen, L., Crabtree, N. J., Reeve, J., & Jacobsen, B. K. (2000). Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: Bone adaptation after decreased mechanical loading. [Research Support, Non-U.S. Gov’t]. Bone, 27(5), 701–707.

    Article  PubMed  Google Scholar 

  • Kim, S. J., & Krebs, H. I. (2012). Effects of implicit visual feedback distortion on human gait. [Research Support, Non-U.S. Gov’t]. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 218(3), 495–502. doi:10.1007/s00221-012-3044-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. J., & Mugisha, D. (2014). Effect of explicit visual feedback distortion on human gait. Journal of Neuroengineering and Rehabilitation, 11(1), 74. doi:10.1186/1743-0003-11-74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. J., Ogilvie, M., Shimabukuro, N., Stewart, T., & Shin, J. H. (2015). Effects of visual feedback distortion on gait adaptation: Comparison of implicit visual distortion versus conscious modulation on retention of motor learning. [Research Support, Non-U.S. Gov’t]. IEEE Transactions on Bio-medical Engineering, 62(9), 2244–2250. doi:10.1109/TBME.2015.2420851.

    Article  PubMed  Google Scholar 

  • Kitago, T., & Krakauer, J. W. (2013). Motor learning principles for neurorehabilitation. [Review]. Handbook of Clinical Neurology, 110, 93–103. doi:10.1016/B978-0-444-52901-5.00008-3.

    Article  PubMed  Google Scholar 

  • Krebs, H. I., Volpe, B. T., Aisen, M. L., & Hogan, N. (2000). Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. Journal of Rehabilitation Research and Development, 37(6), 639–652.

    PubMed  Google Scholar 

  • Malone, L. A., & Bastian, A. J. (2010). Thinking about walking: Effects of conscious correction versus distraction on locomotor adaptation. [Randomized Controlled Trial Research Support, N.I.H., Extramural]. Journal of Neurophysiology, 103(4), 1954–1962. doi:10.1152/jn.00832.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malone, L. A., & Bastian, A. J. (2014). Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke. [Research Support, N.I.H., Extramural]. Neurorehabilitation and Neural Repair, 28(3), 230–240. doi:10.1177/1545968313505912.

    Article  PubMed  Google Scholar 

  • Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.Research Support, U.S. Gov’t, P.H.S.]. Brain: A Journal of Neurology, 119(Pt 4), 1199–1211.

    Article  Google Scholar 

  • Mazzoni, P., & Krakauer, J. W. (2006). An implicit plan overrides an explicit strategy during visuomotor adaptation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(14), 3642–3645.

    Article  Google Scholar 

  • Noble, J. W., & Prentice, S. D. (2006). Adaptation to unilateral change in lower limb mechanical properties during human walking. Experimental Brain Research, 169(4), 482–495.

    Article  PubMed  Google Scholar 

  • Pailhous, J., Ferrandez, A. M., Fluckiger, M., & Baumberger, B. (1990). Unintentional modulations of human gait by optical flow. Behavioural Brain Research, 38(3), 275–281.

    Article  PubMed  Google Scholar 

  • Patla, A. E. (1998). How is human gait controlled by vision? Ecological Psychology, 10(3–4), 287–302.

    Article  Google Scholar 

  • Patterson, K. K., Parafianowicz, I., Danells, C. J., Closson, V., Verrier, M. C., Staines, W. R., et al. (2008). Gait asymmetry in community-ambulating stroke survivors. [Research Support, Non-U.S. Gov’t]. Archives of Physical Medicine and Rehabilitation, 89(2), 304–310. doi:10.1016/j.apmr.2007.08.142.

    Article  PubMed  Google Scholar 

  • Plummer, P., Behrman, A. L., Duncan, P. W., Spigel, P., Saracino, D., Martin, J., et al. (2007). Effects of stroke severity and training duration on locomotor recovery after stroke: A pilot study. Neurorehabilitation and Neural Repair, 21(2), 137–151.

    Article  PubMed  Google Scholar 

  • Prokop, T., Schubert, M., & Berger, W. (1997). Visual influence on human locomotion. Modulation to changes in optic flow. Experimental Brain Research, 114(1), 63–70.

    Article  PubMed  Google Scholar 

  • Rendell, M. A., Masters, R. S., Farrow, D., & Morris, T. (2011). An implicit basis for the retention benefits of random practice. Journal of Motor Behavior, 43(1), 1–13. doi:10.1080/00222895.2010.530304.

    Article  PubMed  Google Scholar 

  • Rosati, G., Roda, A., Avanzini, F., & Masiero, S. (2013). On the role of auditory feedback in robot-assisted movement training after stroke: Review of the literature. [Review]. Computational Intelligence and Neuroscience, 2013, 586138. doi:10.1155/2013/586138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossignol, S. (1996). Visuomotor regulation of locomotion. Canadian Journal of Physiology and Pharmacology, 74(4), 418–425.

    Article  PubMed  Google Scholar 

  • Thikey, H., Grealy, M., van Wijck, F., Barber, M., & Rowe, P. (2012). Augmented visual feedback of movement performance to enhance walking recovery after stroke: Study protocol for a pilot randomised controlled trial. [Randomized Controlled TrialResearch Support, Non-U.S. Gov’t]. Trials, 13, 163. doi:10.1186/1745-6215-13-163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winstein, C. J. (1991). Knowledge of results and motor learning–implications for physical therapy. Physical Therapy, 71(2), 140–149.

    Article  PubMed  Google Scholar 

  • Wuehr, M., Schniepp, R., Pradhan, C., Ilmberger, J., Strupp, M., Brandt, T., et al. (2013). Differential effects of absent visual feedback control on gait variability during different locomotion speeds. [Research Support, Non-U.S. Gov’t]. Experimental Brain Research, 224(2), 287–294. doi:10.1007/s00221-012-3310-6.

    Article  PubMed  Google Scholar 

  • Young, D. E., & Schmidt, R. A. (1992). Augmented kinematic feedback for motor learning. Journal of Motor Behavior, 24(3), 261–273.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by an internal funding source (Faculty Developmental Fund from California Baptist University, Microgrant 2014–2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jae Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Approval

All procedure performed in studies involving human participants were in accordance with the ethical standards of California Baptist University Institutional Review Board.

Informed Consent

Informed consent was obtained from all individual participates included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Kayitesi, M.A., Chan, A. et al. Effects of Partial Absence of Visual Feedback Information on Gait Symmetry. Appl Psychophysiol Biofeedback 42, 107–115 (2017). https://doi.org/10.1007/s10484-017-9358-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-017-9358-0

Keywords

Navigation