Applied Psychophysiology and Biofeedback

, Volume 42, Issue 1, pp 27–37 | Cite as

Implicit Learning of a Finger Motor Sequence by Patients with Cerebral Palsy After Neurofeedback

  • Ana Alves-Pinto
  • Varvara Turova
  • Tobias Blumenstein
  • Conny Hantuschke
  • Renée LampeEmail author


Facilitation of implicit learning of a hand motor sequence after a single session of neurofeedback training of alpha power recorded from the motor cortex has been shown in healthy individuals (Ros et al., Biological Psychology 95:54–58, 2014). This facilitation effect could be potentially applied to improve the outcome of rehabilitation in patients with impaired hand motor function. In the current study a group of ten patients diagnosed with cerebral palsy trained reduction of alpha power derived from brain activity recorded from right and left motor areas. Training was distributed in three periods of 8 min each. In between, participants performed a serial reaction time task with their non-dominant hand, to a total of five runs. A similar procedure was repeated a week or more later but this time training was based on simulated brain activity. Reaction times pooled across participants decreased on each successive run faster after neurofeedback training than after the simulation training. Also recorded were two 3-min baseline conditions, once with the eyes open, another with the eyes closed, at the beginning and end of the experimental session. No significant changes in alpha power with neurofeedback or with simulation training were obtained and no correlation with the reductions in reaction time could be established. Contributions for this are discussed.


Neurofeedback Serial reaction time task Implicit learning Alpha rhythm Cerebral palsy 



Experimental work supported by the Buhl-Strohmaier Foundation and the Kraußianum Foundation. Research group financed by the Würth Foundation. We thank the company Mindfield® Biosystems Ltd., Germany, for lending us the equipment for neurofeedback training and brain recordings.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ayers, M. E. (2004). Neurofeedback for cerebral palsy. Journal of Neurotherapy, 8, 93–94.CrossRefGoogle Scholar
  2. Barry, R., Clarke, A., Johnstone, S., Magee, C., & Rushby, J. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology, 118(12), 2765–2773.CrossRefPubMedGoogle Scholar
  3. Chinier, E., N’Guyen, S., Lignon, G., Ter Minassian, A., Richard, I., & Dinomais, M. (2014). Effect of motor imagery in children with unilateral cerebral palsy: fMRI study. PloS One, 9(4), e93378.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Daly, I., Billinger, M., Laparra-Hernandez, J., Aloise, F., Garcia, M. L., Faller, J., et al. (2013). On the control of brain-computer interfaces by users with cerebral palsy. Clinical Neurophysiology, 124, 1787–1797.CrossRefPubMedGoogle Scholar
  5. Daly, I., Faller, J., Scherer, R., Sweeney-Reed, C. M., Nasuto, S. J., Billinger, M., et al. (2014). Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control. Frontiers in Neuroengineering, 7, 20. doi: 10.3389/fneng.2014.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dekker, M., Sitskoorn, M., Denissen, A., & van Boxtel, G. (2014). The time-course of alpha neurofeedback training effects in healthy participants. Biological Psychology, 95, 70–73. doi: 10.1016/j.biopsycho.2013.11.014.CrossRefPubMedGoogle Scholar
  7. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMedGoogle Scholar
  8. Eliasson, A., Krumlinde, S., Rösblad, B., Beckung, E., Arner, M., AM, Ö., et al. (2006). The Manual Ability Classification System (MACS) for children with cerebral palsy: Scale development and evidence of validity and reliability. Developmental Medicine and Child Neurology, 48, 549–554.CrossRefPubMedGoogle Scholar
  9. Eyre, J. A., Smith, M., Dabydeen, L., Clowry, G. J., Petacchi, E., Battini, R., et al. (2007). Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Annals of Neurology, 62(5), 493–503.CrossRefPubMedGoogle Scholar
  10. Fregni, F., Boggio, P. S., Mansur, C. G., Wagner, T., Ferreira, M. J., Lima, M. C., et al. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16(14), 1551–1555.CrossRefPubMedGoogle Scholar
  11. Gruzelier, J. H., Foks, M., Steffert, T., Chen, M. J.-L., & Ros, T. (2014). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biological Psychology, 95, 86–95.CrossRefPubMedGoogle Scholar
  12. Keizer, A. W., Verment, R. S., & Hommel, B. (2010). Enhancing cognitive control through neurofeedback: A role of gamma-band activity in managing episodic retrieval. Neuroimage, 49, 3404–3413.CrossRefPubMedGoogle Scholar
  13. Leins, U., Goth, G., Hinterberger, T., Klinger, C., Rumpf, N., & Strehl, U. (2007). Neurofeedback for children with ADHD: A comparison of SCP and Theta/Beta protocols. Applied Psychophysiology and Biofeedback, 32, 73–88.CrossRefPubMedGoogle Scholar
  14. Neuper, C., Muller, G. R., Kubler, A., Birbaumer, N., & Pfurtscheller, G. (2003). Clinical application of an EEG-based brain-computer interface: A case study in a patient with severe motor impairment. Clinical Neurophysiology, 114, 399–409.CrossRefPubMedGoogle Scholar
  15. Nissen, M., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.CrossRefGoogle Scholar
  16. Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  17. Palisano, R., Rosenbaum, P., Walter, S., Russell, D., Wood, E., & Galuppi, B. (1997). Development and reliability of a system to classify gross motor function in children with cerebral palsy. Developmental Medicine & Child Neurology, 39(4), 214–223.CrossRefGoogle Scholar
  18. Pascual-Leone, A., Grafman, J., & Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263, 1287–1289.CrossRefPubMedGoogle Scholar
  19. Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26, 121–135.CrossRefPubMedGoogle Scholar
  20. Reiner, M., Rozengurt, R., & Barnea, A. (2014). Better than sleep: Theta neurofeedback training accelerates memory consolidation. Biological Psychology, 95, 45–53.CrossRefPubMedGoogle Scholar
  21. Rethlefsen, S., Deidre, D., & Kay, R. (2010). Classification systems in cerebral palsy. Orthopedic Clinics of North America, 41, 457–467.CrossRefPubMedGoogle Scholar
  22. Robertson, E. (2007). The serial reaction time task: Implicit motor skill learning? The Journal of Neuroscience, 27(38), 10073–10075. doi: 10.1523/JNEUROSCI.2747-07.2007.CrossRefPubMedGoogle Scholar
  23. Ros, T., Munneke, M. A., Ruge, D., Gruzelier, J. H., & Rothwell, J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 31(4), 770–778.CrossRefPubMedGoogle Scholar
  24. Ros, T., Munneke, M. A. M., Parkinson, L. A., & Gruzelier, J. H. (2014). Neurofeedback facilitation of implicit motor learning. Biological Psychology, 95, 54–58.CrossRefPubMedGoogle Scholar
  25. Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M., Damiano, D., et al. (2007). A report: The definition and classification of cerebral palsy April 2006. Developmental Medicine and Child Neurology, 109, 8–14.PubMedGoogle Scholar
  26. Rosenbaum, P. L., Palisano, R. J., Bartlett, D. J., Galuppi, B. E., & Russell, D. J. (2008). Development of the gross motor function classification system for cerebral palsy. Developmental Medicine & Child Neurology, 50(4), 249–253.CrossRefGoogle Scholar
  27. Sauseng, P., Klimesch, W., Gerloff, C., & Hummel, F. C. (2009). Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia, 47(1), 284–288.CrossRefPubMedGoogle Scholar
  28. Staudt, M. (2010). Reorganization after pre-and perinatal brain lesions*. Journal of Anatomy, 217(4), 469–474.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Staudt, M., Grodd, W., Gerloff, C., Erb, M., Stitz, J., & Krägeloh-Mann, I. (2002). Two types of ipsilateral reorganization in congenital hemiparesis A TMS and fMRI study. Brain: A Journal of Neurology, 125(10), 2222–2237.CrossRefGoogle Scholar
  30. Strehl, U. (2013). Neurofeedback. Stuttgart: Kohlhammer.Google Scholar
  31. Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118, e1530–e1540.CrossRefPubMedGoogle Scholar
  32. Wood, E., & Rosenbaum, P. (2000). The gross motor function classification system for cerebral palsy: A study of reliability and stability over time. Developmental Medicine & Child Neurology, 42(05), 292–296.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ana Alves-Pinto
    • 1
  • Varvara Turova
    • 1
  • Tobias Blumenstein
    • 1
  • Conny Hantuschke
    • 2
  • Renée Lampe
    • 1
    • 3
    Email author
  1. 1.Research Unit of the Buhl-Strohmaier Foundation for Pediatric Neuroorthopaedics and Cerebral Palsy, Orthopaedic DepartmentKlinikum Rechts der Isar, Technische Universität MünchenMunichGermany
  2. 2.Münchner FörderzentrumMunichGermany
  3. 3.Markus Würth ProfessorshipTechnische Universität MünchenMunichGermany

Personalised recommendations