Applied Psychophysiology and Biofeedback

, Volume 41, Issue 2, pp 157–164 | Cite as

Testing the Benefits of Neurofeedback on Selective Attention Measured Through Dichotic Listening

  • Marien GadeaEmail author
  • Marta Aliño
  • Evelio Garijo
  • Raul Espert
  • Alicia Salvador


The electrophysiological changes after a single session of neurofeedback training (↑SMR/↓Theta) and its effects on executive attention during a dichotic listening test with forced attentional procedures were measured in a sample of 20 healthy women. A pre–post moment test double blind design, with the inclusion of a group receiving sham neurofeedback, allowed for minimization of alien influences. The interaction of Moment × Group was significant, indicating an enhancement of SMR band after the real neurofeedback. The dichotic listening scores were correlated with the amplitude of Beta band in baseline conditions. The performance on the forced left attentional condition in dichotic listening was significantly improved and correlated positively with the post-training enhancement of the SMR band. The sham neurofeedback group also improved DL scores, so a clear affirmation about the benefits of neurofeedback training over cognitive performance could not be unambiguously established. It is concluded that the protocol showed a good independence and acceptable trainability in modifying the EEG results, but there was limited interpretability regarding cognitive outcomes.


Neurofeedback Dichotic listening Executive attention EEG SMR Theta Beta Sham procedures 


  1. American Psychological Association. (1992). Ethical principles of psychologists and code of conduct. American Psychologist, 47, 1597–1611.CrossRefGoogle Scholar
  2. Barnea, A., Rassis, A., & Zaidel, E. (2005). Effect of neurofeedback on hemispheric word recognition. Brain and Cognition, 59(3), 314–321.CrossRefPubMedGoogle Scholar
  3. de Zambotti, M., Bianchin, M., Magazzini, L., Gnesato, G., & Angrilli, A. (2012). The efficacy of EEG neurofeedback aimed at enhancing sensory–motor rhythm theta ratio in healthy subjects. Experimental Brain Research, 221(1), 69–74.CrossRefPubMedGoogle Scholar
  4. Egner, T., & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport, 12(18), 4155–4159.CrossRefPubMedGoogle Scholar
  5. Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131–139.CrossRefPubMedGoogle Scholar
  6. Escolano, C., Olivan, B., Lopez-del-Hoyo, Y., Garcia-Campayo, J., & Minguez, J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. In Conference proceedings IEEE engineering in medicine and biology society, pp. 4643–4647.Google Scholar
  7. Gadea, M., & Espert, R. (2009). A comparison of the effects for sustained versus shifted attention on dichotic listening performance. Laterality, 14(3), 315–328.PubMedGoogle Scholar
  8. Gadea, M., Espert, R., Salvador, A., & Martí-Bonmatí, L. (2011). The sad, the angry, and the asymmetrical brain: Dichotic listening studies of negative affect and depression. Brain and Cognition, 76(2), 294–299.CrossRefPubMedGoogle Scholar
  9. Gadea, M., Gomez, C., & Espert, R. (2000). Test–retest performance for the consonant-vowel dichotic listening test with and without attentional manipulations. Journal of Clinical and Experimental Neuropsychology, 22(6), 793–803.CrossRefPubMedGoogle Scholar
  10. Greenberg, L. M., & Waldman, I. D. (1993). Developmental normative data on the test of variables of attention (TOVA). Journal of Child Psychology and Psychiatry, 34(6), 1019–1030.CrossRefPubMedGoogle Scholar
  11. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience and Biobehavioral Reviews, 44, 124–141.CrossRefPubMedGoogle Scholar
  12. Gruzelier, J., Egner, T., & Vernon, D. (2006). Validating the efficacy of neurofeedback for optimising performance. Progress in Brain Research, 159, 421–431.CrossRefPubMedGoogle Scholar
  13. Hiscock, M., & Kinsbourne, M. (2011). Attention and the right-ear advantage: What is the connection? Brain and Cognition, 76(2), 263–275.CrossRefPubMedGoogle Scholar
  14. Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401–1408.PubMedPubMedCentralGoogle Scholar
  15. Hugdahl, K. (2003). Dichotic listening in the study of auditory laterality. In K. Hugdahl & R. J. Davidson (Eds.), The asymmetrical brain (pp. 441–476). Cambridge: MIT Press.Google Scholar
  16. Hugdahl, K., Westerhausen, R., Alho, K., Medvedev, S., Laine, M., & Hämäläinen, H. (2009). Attention and cognitive control: Unfolding the dichotic listening story. Scandinavian Journal of Psychology, 50(1), 11–22.CrossRefPubMedGoogle Scholar
  17. Kaiser, D. A., & Othmer, S. (2000). Effect of neurofeedback on variables of attention in a large multi-center trial. Journal of Neurotherapy, 4(1), 5–15.CrossRefGoogle Scholar
  18. Kompus, K., Specht, K., Ersland, L., Juvodden, H. T., van Wageningen, H., Hugdahl, K., & Westerhausen, R. (2012). A forced-attention dichotic listening fMRI study on 113 subjects. Brain and Language, 121(3), 240–247.CrossRefPubMedGoogle Scholar
  19. Meisel, V., Servera, M., Garcia-Banda, G., Cardo, E., & Moreno, I. (2014). Reprint of neurofeedback and standard pharmacological intervention in ADHD: A randomized controlled trial with six-month follow-up. Biological Psychology, 95, 116–125.CrossRefPubMedGoogle Scholar
  20. Monastra, V. J., Lynn, S., Linden, M., Lubar, J. F., Gruzelier, J., & LaVaque, T. J. (2005). Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 30(2), 95–114.CrossRefPubMedGoogle Scholar
  21. Mondor, T. A., & Bryden, M. P. (1992). Orienting of auditory spatial attention: Effects of a lateralized tone cue. Neuropsychologia, 30(8), 743–752.CrossRefPubMedGoogle Scholar
  22. Ninaus, M., Kober, S. E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., & Wood, G. (2013). Neural substrates of cognitive control under the belief of getting neurofeedback training. Frontiers in Human Neuroscience,. doi: 10.3389/fnhum.2013.00914.Google Scholar
  23. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  24. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10, 87. doi: 10.1186/1471-2202-10-87.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rossiter, T. R., & LaVaque, T. J. (1995). A comparison of EEG biofeedback and psychoestimulants in treating attention deficit hyperactivity disorders. Journal of Neurotherapy, 1(1), 48–59.CrossRefGoogle Scholar
  27. Schomer, D. L., & Da Silva, F. L. (2012). Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields (6th ed.). Philadelphia, PA: Lippincott, Williams and Wilkins.Google Scholar
  28. Tinius, T. P., & Tinius, K. A. (2000). Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder. Journal of Neurotherapy, 4, 27–41.CrossRefGoogle Scholar
  29. van Boxtel, G. J., & Gruzelier, J. H. (2014). Neurofeedback: Introduction to the special issue. Biological Psychology, 95, 1–3.CrossRefPubMedGoogle Scholar
  30. Vernon, D. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Applied Psychophysiology and Biofeedback, 30(4), 347–364.CrossRefPubMedGoogle Scholar
  31. Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75–85.CrossRefPubMedGoogle Scholar
  32. Weber, E., Köberl, A., Frank, S., & Doppelmayr, M. (2011). Predicting successful learning of SMR neurofeedback in healthy participants: Methodological considerations. Applied Psychophysiology and Biofeedback, 36(1), 37–45.CrossRefPubMedGoogle Scholar
  33. Witte, M., Kober, S. E., Ninaus, M., Neuper, C., & Wood, G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience, 7, 478. doi: 10.3389/fnhum.2013.00478.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yurgil, K. A., & Golob, E. J. (2010). Neural activity before and after conscious perception in dichotic listening. Neuropsychologia, 48(10), 2952–2958.CrossRefPubMedGoogle Scholar
  35. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54(2), 1427–1431.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marien Gadea
    • 1
    Email author
  • Marta Aliño
    • 1
  • Evelio Garijo
    • 1
  • Raul Espert
    • 1
  • Alicia Salvador
    • 1
  1. 1.Departament de Psicobiologia, Facultat de PsicologiaUniversitat de ValènciaValenciaSpain

Personalised recommendations