Applied Psychophysiology and Biofeedback

, Volume 41, Issue 1, pp 27–37 | Cite as

Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement

  • Thalía FernándezEmail author
  • Jorge Bosch-Bayard
  • Thalía Harmony
  • María I. Caballero
  • Lourdes Díaz-Comas
  • Lídice Galán
  • Josefina Ricardo-Garcell
  • Eduardo Aubert
  • Gloria Otero-Ojeda


Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.


Neurofeedback Visual versus auditory reinforcement Learning disabled children QEEG EEG-biofeedback 



The authors are grateful for the children’s and parents’ cooperation in this study. The authors also acknowledge Judith Becerra, Fabiola García, Nelson Pumariega, Héctor Belmont, Susana Angélica Castro-Chavira, Lourdes Lara, Leonor Casanova, Bertha Esquivel, Teresa Álvarez, María Elena Juárez, Eneida Porras-Kattz, and Efraín Santiago for technical assistance, Roberto A. Prado-Alcalá for his invaluable psychological comments, and Dorothy Pless for revising English style. This project was supported in part by Grants IN226001, IN204103 and IN204613 from PAPIIT; 2001 and E59 from CONCYTEQ; and 69145 and 218556 from CONACYT.


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., pp. 56–64), Text Revision (DSM-IV-TR).Google Scholar
  2. Becerra, J., Fernández, T., Harmony, T., Caballero, M. I., García, F., Fernández-Bouzas, A., et al. (2006). Follow-up study of learning-disabled children treated with neurofeedback or placebo. Clinical EEG and Neuroscience, 37, 198–203.CrossRefPubMedGoogle Scholar
  3. Bernal, J., Harmony, T., Rodríguez, M., Reyes, A., Yáñez, G., Fernández, T., et al. (2000). Auditory event-related potentials in poor readers. International Journal of Psychophysiology, 36, 11–23.CrossRefPubMedGoogle Scholar
  4. Booth, J. R., Bebko, G., Burman, D. D., & Bitan, T. (2007). Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuropsychologia, 45, 775–783.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Breteler, M. H., Arns, M., Peters, S., Giepmans, I., & Verhoeven, L. (2010). Improvements in spelling after QEEG-based neurofeedback in dyslexia: A randomized controlled treatment study. Applied Psychophysiology and Biofeedback, 35, 5–11. doi: 10.1007/s10484-009-9105-2.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bueno, V. F., & Ribeiro do Valle, L. E. (2012). Effects of visual and auditory stimuli in a choice reaction time task. Psychology & Neuroscience, 5, 199–2015. doi: 10.3922/j.psns.2012.2.10.CrossRefGoogle Scholar
  7. Cantor, D. S., & Chabot, R. (2009). QEEG studies in the assessment and treatment of childhood disorders. Clinical EEG and Neuroscience, 40, 113–121. Review.CrossRefPubMedGoogle Scholar
  8. Catts, H. W., Gillispie, M., Leonard, L. B., Kail, R. V., & Miller, C. A. (2002). The role of speed of processing, rapid naming, and phonological awareness in reading achievement. Journal of Learning Disabilities, 35, 509–524.CrossRefPubMedGoogle Scholar
  9. Chabot, R. J., di Michele, F., & John, E. R. (2001). The clinical role of computerized EEG in the evaluation and treatment of learning and attention disorders in children and adolescents. The Journal of Neuropsychiatry & Clinical Neurosciences, 13, 171–186.CrossRefGoogle Scholar
  10. Chabot, R. J., di Michele, F., & Prichep, L. (2005). The role of quantitative electroencephalography in child and adolescent psychiatric disorders. Child & Adolescent Psychiatric Clinics of North America, 14, 21–53.CrossRefGoogle Scholar
  11. Chabot, R. J., & Serfontein, G. (1996). Quantitative EEG profiles of children with attention deficit disorder. Biological Psychiatry, 40, 951–963.CrossRefPubMedGoogle Scholar
  12. Cummings, G. (2014). The new statistics: Why and how. Psychological Science, 25, 7–29.CrossRefGoogle Scholar
  13. Díaz de León, A. E., Harmony, T., Marosi, E., Becker, J., & Alvarez, A. (1988). Effect of different factors on EEG spectral parameters. International Journal of Neuroscience, 43, 123–131.CrossRefPubMedGoogle Scholar
  14. Fernández, T., Harmony, T., Fernández-Bouzas, A., Díaz-Comas, L., Prado-Alcalá, R. A., Valdés-Sosa, P., et al. (2007). Changes in EEG current sources induced by neurofeedback in learning disabled children. An exploratory study. Applied Psychophysiology and Biofeedback, 32, 169–183.CrossRefPubMedGoogle Scholar
  15. Fernández, T., Harmony, T., Fernández-Bouzas, A., Silva, J., Herrera, W., Santiago-Rodríguez, E., & Sánchez, L. (2002). Sources of EEG activity in learning disabled children. Clinical Electroencephalography, 33, 160–164.CrossRefPubMedGoogle Scholar
  16. Fernández, T., Herrera, W., Harmony, T., Díaz-Comas, L., Santiago, E., Sánchez, L., et al. (2003). EEG and behavioral changes following neurofeedback treatment in learning disabled children. Clinical Electroencephalography, 43, 145–152.CrossRefGoogle Scholar
  17. Fonseca, L. C., Tedrus, G. M., Chiodi, M. G., Cerqueira, J. N., & Tonelotto, J. M. (2006). Quantitative EEG in children with learning disabilities: Analysis of band power. Archivos de Neuropsiquiatría, 64, 376–381.CrossRefGoogle Scholar
  18. Galán, L., Biscay, R., Rodríguez, J. L., Pérez-Avalo, M. C., & Rodríguez, R. (1997). Testing topographic differences between event related brain potentials by using non-parametric combinations of permutation tests. Electroencephalography and Clinical Neurophysiology, 102, 240–247.CrossRefPubMedGoogle Scholar
  19. Gasser, T., Rousson, V., & Scheiter Gasser, U. (2003). EEG power and coherence in children with educational problems. Clinical Neurophysiology, 20, 273–282.CrossRefGoogle Scholar
  20. Harmony, T., Hinojosa, G., Marosi, E., Becquer, J., Rodríguez, M., Reyes, A., & Rocha, C. (1990). Correlation between EEG spectral parameters and an educational evaluation. International Journal of Neuroscience, 54, 147–155.CrossRefPubMedGoogle Scholar
  21. Hernández, J. L., Valdés, P., Biscay, R., Virués, T., Szava, S., Bosch, J., et al. (1994). A global scale factor in brain topography. International Journal of Neuroscience, 76, 267–278.CrossRefPubMedGoogle Scholar
  22. Holcomb, P. J., Ackerman, P. T., & Dykman, R. A. (1986). Auditory event-related potentials in attention and reading disabled boys. International Journal of Psychophysiology, 3, 263–273.CrossRefPubMedGoogle Scholar
  23. Iglesias, A., & Derman, B. (1985). Prueba de lecto-escritura. México, DF: Ed. Progreso.Google Scholar
  24. John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 1980(210), 1255–1258.CrossRefGoogle Scholar
  25. John, E. R., Prichep, L., Ahn, H., Easton, P., Fridman, J., & Kaye, H. (1983). Neurometric evaluation of cognitive dysfunctions and neurological disorders in children. Progress in Neurobiology, 21, 239–290.CrossRefPubMedGoogle Scholar
  26. Leark, R. A., Dupuy, T. R., Greenberg, L. M., Corman, C. L., & Kindschi, C. L. (1999). T.O.V.A. professional guide. Los Alamitos, CA: Universal Attention Disorders Inc.Google Scholar
  27. Liu, L., Vira, A., Friedman, E., Minas, J., Bolger, D., Bitan, T., & Booth, J. (2010). Children with reading disability show brain differences in effective connectivity for visual, but not auditory word comprehension. PLoS One, 25, e13492.CrossRefGoogle Scholar
  28. Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O’Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self Regulation, 20, 83–99.CrossRefPubMedGoogle Scholar
  29. Matousek, M., & Petersén, I. (1971). Frequency analysis of EEG registrations in normal children 1–16 years old. Nordisk Medicin, 85, 637–638.PubMedGoogle Scholar
  30. McAuley, J. D., & Henry, M. J. (2010). Modality effects in rhythm processing: Auditory encoding of visual rhythms is neither obligatory nor automatic. Attention, Perception, & Psychophysics, 72, 1377–1389.CrossRefGoogle Scholar
  31. Nazari, M. A., Mosanezhad, E., Hashemi, T., & Jahan, A. (2012). The effectiveness of neurofeedback training on EEG coherence and neuropsychological functions in children with reading disability. Clinical EEG and Neuroscience, 43, 315–322. doi: 10.1177/1550059412451880.CrossRefPubMedGoogle Scholar
  32. Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5, 235–253. doi: 10.1162/jocn.1993.5.2.235.CrossRefPubMedGoogle Scholar
  33. Ng, A. W. Y., & Chan, A. H. S. (2012). Finger response times to visual, auditory and tactile modality stimuli [Abstract]. Proceedings of the International MultiConference of Engineers and Computer Scientists, 2012, 1449–1454.Google Scholar
  34. Riviello, J. J. Jr., Nordli, D. R. Jr., & Niedermeyer, E. (2011). Normal EEG and sleep: Infants to adolescents. In D. L. Schromer, & F. H. Lopes da Silva (Eds.), Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields (6th ed., pp. 163–180). New York: Lippincott Williams & Wilkins.Google Scholar
  35. Ogden, R. S., Wearden, J. H., & Jones, L. A. (2008). The remembrance of times past: Interference in temporal reference memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 1524–1544.PubMedGoogle Scholar
  36. Pain, M. T., & Hibbs, A. (2007). Sprint starts and the minimum auditory reaction time. Journal of Sport Sciences, 25, 79–86.CrossRefGoogle Scholar
  37. Pesarin, F., & Salmaso, L. (2010). Permutation tests for complex data: Theory, applications and software. UK: Wiley.CrossRefGoogle Scholar
  38. Ricardo-Garcell, J. (2004). Aportes del electroencefalograma convencional y el análisis de frecuencias para el estudio del Trastorno por Déficit de Atención. Segunda parte. Salud Mental, 27, 7–14.Google Scholar
  39. Schmid, C., Büchel, C., & Rose, M. (2011). The neural basis of visual dominance in the context of audio–visual object processing. Neuroimage, 55, 304–311. Epub 2010 Nov 26.CrossRefPubMedGoogle Scholar
  40. Shelton, J., & Kumar, G. P. (2010). Comparison between auditory and visual simple reaction times. Neuroscience & Medicine, 1, 30–32.CrossRefGoogle Scholar
  41. Shenvi, D., & Balasubramanian, P. (1994). A comparative study of visual and auditory reaction times in males and females. Indian Journal of Physiology and Pharmacology, 38, 229–231.PubMedGoogle Scholar
  42. Silva-Pereyra, J., Rivera-Gaxiola, M., Fernández, T., Díaz-Comas, L., Harmony, T., Fernández-Bouzas, A., et al. (2003). Are poor readers semantically challenged? An event-related brain potential assessment. International Journal of Psychophysiology, 49, 187–199.CrossRefPubMedGoogle Scholar
  43. Stevenson, H. W., & Wright, J. C. (1966). Child psychology. In J. B. Sidowski (Ed.), Experimental methods and instrumentation in psychology (pp. 577–605). New York: McGraw Hill.Google Scholar
  44. Thompson, P. D., Colebatch, J. G., Brown, P., Rothwell, J. C., Day, B. L., Obeso, J. A., & Marsden, C. D. (1992). Voluntary stimulus sensitive jerks and jumps mimicking myoclonus or pathological startle syndromes. Movement Disorders, 7(3), 257–262.CrossRefPubMedGoogle Scholar
  45. Thompson, L., Thompson, M., & Reid, A. (2010). Neurofeedback outcomes in clients with Asperger’s syndrome. Applied Psychophysiology and Biofeedback, 35, 63–81. doi: 10.1007/s10484-009-9120-3.CrossRefPubMedGoogle Scholar
  46. Valdés, P., Biscay, R., Galán, L., Bosch, J., Zsava, S., & Virués, T. (1990). High resolution spectral EEG norms topography. Brain Topography, 3, 281–282.Google Scholar
  47. Valdés, P., Bosch, J., Grave, R., Hernández, J., Riera, J., Pascual, R., & Biscay, R. (1992). Frequency domain models of the EEG. Brain Topography, 4, 309–319.CrossRefPubMedGoogle Scholar
  48. Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34, 131–156. Review.CrossRefPubMedGoogle Scholar
  49. Weschler, D. (1981). Manual del WISC-R Español Escala de Inteligencia Revisada para el nivel escolar. México, DF: Manual Moderno.Google Scholar
  50. Yagi, Y., Coburn, K. L., Estes, K. M., & Arruda, J. E. (1999). Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. European Journal of Applied Physiology and Occupational Physiology, 80, 402–408.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thalía Fernández
    • 1
    Email author
  • Jorge Bosch-Bayard
    • 1
  • Thalía Harmony
    • 1
  • María I. Caballero
    • 2
  • Lourdes Díaz-Comas
    • 3
  • Lídice Galán
    • 3
  • Josefina Ricardo-Garcell
    • 1
  • Eduardo Aubert
    • 3
  • Gloria Otero-Ojeda
    • 4
  1. 1.Departamento de Neurobiología Conductual y Cognitiva, Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
  2. 2.Facultad de PsicologíaUniversidad Autónoma de QuerétaroQuerétaroMexico
  3. 3.Centro de Neurociencias de CubaPlayaCuba
  4. 4.Facultad de MedicinaUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations