Skip to main content

Transient Adverse Side Effects During Neurofeedback Training: A Randomized, Sham-Controlled, Double Blind Study

Abstract

The benefits of clinical neurofeedback training are well known, however, its adverse side-effects are less studied. This research focuses on the transient adverse side effects of neurofeedback training via a double-blind, sham/controlled methodology. Thirty healthy undergraduate students volunteers were randomly divided into three treatment groups: increasing a modified Sensory Motor Rhythm, increasing Upper Alpha, and Sham/control group who receive a random reward. The training sessions were administered for a total of ten sessions. Questionnaires of transient adverse side effects were completed by all volunteers before each session. The results suggest that similar to most medical treatments, neurofeedback can cause transient adverse side effects. Moreover, most participants reported experiencing some side effects. The side effects can be divided into non-specific side effect, associated with the neurofeedback training in general and specific ones associated with the particular protocol. Sensory Motor Rhythm protocol seems to be the most sensitive to side effects.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity—A meta-analysis. Clinical EEG and Neuroscience, 40, 180–189. doi:10.1177/155005940904000311.

    PubMed  Article  Google Scholar 

  • Basar, E. (2006). The theory of the whole-brain-work. International Journal of Psychophysiology, 60, 133–138. doi:10.1016/j.ijpsycho.2005.12.007.

    PubMed  Article  Google Scholar 

  • Basar, E., & Güntekin, B. (2008). A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research, 1235, 172–193. doi:10.1016/j.brainres.2008.06.103.

    PubMed  Article  Google Scholar 

  • Beauregard, M., & Levesque, J. (2006). Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 31(1), 3–20. doi:10.1007/s10484-006-9001-y.

    PubMed  Article  Google Scholar 

  • Beck, A. T. (1987). Beck depression inventory. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Beck, A. T., Steer, R. A., & Garbin, M. G. J. (1988). Psychometric properties of the Beck Depression Inventory 25 years of evaluation. Clinical Psychology Review, 8, 77–100. doi:10.1016/0272-7358(88)90050-5.

    Article  Google Scholar 

  • Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze.

  • Collura, T. F. (1990). Real-time filtering for the estimation of steady-state visual evoked brain potentials. IEEE Transactions on Biomedical Engineering, 37, 650–652. doi:10.1109/10.55670.

    PubMed  Article  Google Scholar 

  • Egner, T., & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport, 12(18), 4155–4160. doi:10.1097/00001756-200112210-00058.

    PubMed  Article  Google Scholar 

  • Egner, T., & Gruzelier, J. H. (2004). EEG Biofeedback of low beta band components: Frequency specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115, 131–139. doi:10.1016/S1388-2457(03)00353-5.

    PubMed  Article  Google Scholar 

  • Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. In Annual International Conference of the IEEE (pp. 2327–2330). Engineering in Medicine and Biology Society (EMBC). doi:10.1109/IEMBS.2011.6090651.

  • Fisher, R. A. (1954). Statistical methods for research workers. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Gruzelier, J., Egner, T., & Vernon, D. (2006). Validating the efficacy of neurofeedback for optimising performance. Progress in Brain Research, 159, 421–431. doi:10.1016/S0079-6123(06)59027-2.

    PubMed  Article  Google Scholar 

  • Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., et al. (2014). Influence of EEG neurofeedback training on episodic memory: A randomized, sham-controlled, double blind study. Memory. doi:10.1080/09658211.2014.921713.

    PubMed  Google Scholar 

  • Hammond, D. C. (2001). Adverse reactions and potential iatrogenic effects in neurofeedback training. Journal of Neurotherapy, 4, 57–69. doi:10.1300/J184v04n04_09.

    Article  Google Scholar 

  • Hammond, D. C. (2007). Neurofeedback for the enhancement of athletic performance and physical balance. The Journal of the American Board of Sport Psychology, 1, 1–9.

    Google Scholar 

  • Hammond, D. C. (2008). First, do no harm: Adverse effects and the need for practice standards in neurofeedback. Journal of Neurotherapy, 1, 79–88. doi:10.1080/10874200802219947.

    Article  Google Scholar 

  • Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15, 305–336. doi:10.1080/10874208.2011.623090.

    Article  Google Scholar 

  • Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in Human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1–10. doi:10.1007/s10484-005-2169-8.

    PubMed  Article  Google Scholar 

  • Herrmann, C. S., Sensowski, D., & Röttger, S. (2004). Phase-locking and amplitude modulations of EEG alpha: Two measures reflect different cognitive processes in a working memory task. Experimental Psychology, 51, 311. doi:10.1027/1618-3169.51.4.311.

    PubMed  Article  Google Scholar 

  • Hoedlmoser, K., Pecherstorfer, T., Gruber, E., Anderer, P., Doppelmayr, M., Klimesch, W., & Schabus, M. (2008). Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401–1408.

    PubMed Central  PubMed  Google Scholar 

  • International Society for Neurofeedback and Research (ISNR). (2015). Definition of neurofeedback. Resource document. http://www.isnr.net/neurofeedback-info/learn-more-about-neurofeedback.cfm

  • Lansbergen, M. M., van Dongen-Boomsma, M., Buite-laar, J. K., & Slaats-Willemse, D. (2011). ADHD and EEG-neurofeedback: A double-blind rando- mized placebo-controlled feasibility study. Journal of Neural Transmission, 118, 275–284. doi:10.1007/s00702-010-0524-2.

    PubMed Central  PubMed  Article  Google Scholar 

  • Lubar, J. F. (2003). Neurofeedback for the management of attention-deficit disorders. In M. Schwartz & F. Andrasik (Eds.), Biofeedback: A practitioner’s guide (pp. 409–437). New York: The Guilford Press.

    Google Scholar 

  • Lubar, J. F., Shabsin, H. S., Natelson, S. E., Holder, G. S., Whitsett, S. F., Pamplin, W. E., & Krulikowski, D. I. (1981). EEG operant conditioning in intractable epileptics. Archives of Neurology, 38, 700–704.

    PubMed  Article  Google Scholar 

  • Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperactive child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report. Biofeedback and Self-Regulation, 1(3), 293–306.

    PubMed  Article  Google Scholar 

  • Matthews, T. V. (2007). Neurofeedback overtraining and the vulnerable patient. Journal of Neurotherapy, 11(3), 63–66. doi:10.1080/10874200802126290.

    Article  Google Scholar 

  • Ochs, L. (2007). Comment on “neurofeedback overtraining and the vulnerable patient”. Journal of Neurotherapy, 11(3), 67–71. doi:10.1080/10874200802126357.

    Article  Google Scholar 

  • Olive J. D. (1959). Estimation of the medians for dependent variables. The Annals of Mathematical Statistics. Resource document. http://projecteuclid.org/download/pdf_1/euclid.aoms/1177706374

  • Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10, 87. doi:10.1186/1471-2202-10-87.

    PubMed Central  PubMed  Article  Google Scholar 

  • Rosenbaum, J. L., Fava, M., Hoog, S. L., Ascorf, R. C., & Kreb, W. C. (1998). Selective Serotonin reuptake inhibitor discontinuation syndrome: A randomized clinical trial. Biological Psychiatry, 44(2), 77–87. doi:10.1007/s10484-006-9002-x.

    PubMed  Article  Google Scholar 

  • Rossi, V., & Pourtois, G. (2012). Transient state-dependent fluctuations in anxiety measured using STAI, POMS, PANAS or VAS: A comparative review. Anxiety, Stress and Coping, 25(6), 603–645. doi:10.1080/10615806.2011.582948.

    Article  Google Scholar 

  • Seligman, M. E. P., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74, 1–9. doi:10.1037/h0024514.

    PubMed  Article  Google Scholar 

  • Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 15(4), 292–304. doi:10.1080/10874208.2011.623089.

    Article  Google Scholar 

  • Spielberger, C. D. (1983). Manual for the State-Trait Anxiety Inventory STAI (Form Y). Palo Alto, CA: Consulting Psychologists Press.

    Google Scholar 

  • Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. doi:10.1007/s10484-006-9002-x.

    PubMed  Article  Google Scholar 

  • Tan, G., Thornby, J., Hammond, D. C., Strehl, U., Canady, B., Arnemann, K., & Kaiser, D. A. (2009). Meta-analysis of EEG biofeedback in treating epilepsy. Clinical EEG and Neuroscience, 40(3), 173–179. doi:10.1177/155005940904000310.

    PubMed  Article  Google Scholar 

  • Thatcher, R. W. (1999). Introduction to Quantitative EEG and Neurofeedback. Evans, J. R. & Abarbanel, A. (Eds). San Diego, California: Academic Press.

  • Todder, D., Levine, J., Dwolatzky, T., & Kaplan, Z. (2010). Case report: impaired memory and disorientation induced by delta band down-training over the temporal brain regions by neurofeedback treatment. Journal of Neurotherapy, 14(2), 153–155.

    Article  Google Scholar 

  • Tukey, J. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99–114.

    PubMed  Article  Google Scholar 

  • van Dongen-Boomsma, M. (2014). Need, quest and evidence resting-state oscillations, neurofeedback, and working memory training in ADHD. Nijmegen: Radboud University.

    Google Scholar 

  • Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. doi:10.1080/10874200903334397.

    Article  Google Scholar 

  • Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. H. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47, 75–85. doi:10.1016/S0167-8760(02)00091-0.

    PubMed  Article  Google Scholar 

  • Whitsett, S. F., Lubar, J. F., Holder, G. S., Pamplin, W. E., & Shabsin, H. S. (1982). A double-blind investigation of the relationship between seizure activity and the sleep EEG following EEG biofeedback training. Biofeedback and Self-Regulation, 7, 193–209.

    PubMed  Article  Google Scholar 

  • Zoefel, B., Huster, R. J., & Herman, C. J. (2010). Neurofeedback training for upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54(2), 1427–1431. doi:10.1016/j.neuroimage.2010.08.078.

    PubMed  Article  Google Scholar 

  • Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 54, 1427–1431. doi:10.1016/j.neuroimage.2010.08.078.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Herman Chernoff, Professor Emeritus of Applied Mathematics at MIT and of Statistics at Harvard University and Eli Upfal, Professor of Computer Science at Brown University for their insights in the data analysis. Special thanks are due to the reviewers for their extensive questions that significantly improved the presentation. This research was funded by the Department of Psychology,Achva Academic College, Beer Tuvia, Israel, and the Ministry of Health, Beer Sheva Mental Health Center, Beer-Sheva, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainat Rogel.

Appendix

Appendix

List of the DESS side effects included in the side effects questionnaire

Side effect Side effect
Nervousness or anxiety Blurred vision
Elevated mood, feeling high Sore eyes
Irritability Uncontrollable mouth/tongue movements
Sudden worsening of mood Problems with speech or speaking clearly
Sudden outbursts of anger (‘anger attacks’) Headache
Sudden panic or anxiety attacks Increased saliva in mouth
Bouts of crying or tearfulness Dizziness, lightheadedness, or sensation of spinning (vertigo)
Agitation Nose running
Feeling unreal or detached Shortness of breath, gasping for air
Confusion or trouble concentrating Chills
Forgetfulness, memory problems Fever
Mood swings Vomiting
Trouble sleeping, insomnia Nausea
Increased dreaming or nightmares Diarrhea
Sweating more than usual Stomach cramps
Shaking, trembling Stomach bloating
Muscle tension or stiffness Unusual visual sensations (lights, colors, geometric shapes, etc.)
Muscle aches or pains Burning, numbness, tingling sensation
Restless feeling in legs Unusual sensitivity to sound
Muscle cramps, spasms, twitching Ringing or noises in the ears
Fatigue, tiredness Unusual tastes or smells
Unsteady gait or uncoordinated  

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogel, A., Guez, J., Getter, N. et al. Transient Adverse Side Effects During Neurofeedback Training: A Randomized, Sham-Controlled, Double Blind Study. Appl Psychophysiol Biofeedback 40, 209–218 (2015). https://doi.org/10.1007/s10484-015-9289-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-015-9289-6

Keywords

  • Neurofeedback
  • Side effects
  • SMR
  • Upper Alpha